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PREFACE

This book is primarily designed as a text-book for the

classes in the Calculus at Cornell University and other insti-

tutions in which the object and extent of the work are

similar. For the engineering students at Cornell, Differen-

tial Calculus is taught during the winter term of the fresh-

man year ; the students are then familiar with Analytic

Geometry, and many properties of the conies can be sup-

posed known.

When use is made of Cartesian coordinates, they are

always assumed to be rectangular.

As an apology for adding still another work to a field in

which the literature is already extensive, it may be said

that probably no other book has just the scope of this one.

Many of the works are too brief, and omit rigorous proofs as

being too difficult for the average student, while the more

extensive treatises have too much for a student to master in

the allotted time.

While the chapter on fundamental principles is a long

one, nothing more is introduced than is necessary for sub-

sequent parts of the work ; and it is hoped that the matter

is so arranged that the student will not find it difficult

reading.

In the chapter on expansion of functions unusual stress is

laid upon convergence and the calculation of the remainder

;

and numerous examples are discussed to illustrate the prin-

ciples.
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The chapter on asymptotes is perhaps unusually long, as

the subject is so presented that the form of any infinite

branch can be readily determined from its approximate

equation, and the process is fully illustrated both in this

chapter and in a later one on curve tracing.

Quite a full discussion is given to the form of a curve in

the vicinity of a singular point, the method of expansion

being extensively used.

No list of " higher plane curves " has been prepared, since

the subject, as usually given, is properly a part of Analytic

Geometry. A chapter on that subject is contained in the

Analytic Geometry of this series. The occasional marginal

references [A. G.] are to this book.

No specific acknowledgments to other works have been

given ; for although various works have been consulted, the

main inspiration has come from the class room and from

extensive consultation with our colleagues.

Many of the examples have been selected from other

books, but a large number are new. When original exam-

ples have been taken from recent works, acknowledgment

of the source is made.

We acknowledge our indebtedness to the other authors

of this series for their hearty cooperation ; to our colleagues,

Dr. J. I. Hutchinson and Dr. G. A. Miller, for the keen

interest they have taken in the work and for their assistance

in verifying examples and reading proof ; to Mr. Peter

Field, Fellow in Mathematics, for solving the entire list of

exercises ; and to Mr. V. T. Wilson, Instructor in Drawing

in Sibley College, for drawing the figures. Every figure in

the book is new, and drawn to scale, except that in some

cases vertical ordinates are proportionately foreshortened

to fit the page.
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INTRODUCTION

In this general introductory chapter some terras of fre-

quent use in subsequent work will be briefly recalled to mind

and illustrated, and their meaning somewhat extended.

1. Number. Mathematics is concerned with the study of

numbers and their relations to each other. Numbers are

represented by letters, as a, 6, c, a;, y, z, etc., or by figures,

1, 2, 7, VIl, -8, |, etc.

2. Operations. The process of obtaining a number from

other numbers by any definite rule is called an operation.

Addition, subtraction, multiplication, division, raising to

integral powers and extracting roots are called algebraic

operations. All other operations are transcendental; thus

taking the cosine or the logarithm of a given number is a

transcendental operation.

An inverse operation is the undoing of what was done by

the corresponding direct operation, and it ends where the

direct operation began. It may also be defined as an opera-

tion the effect of which the direct operation simply annuls.

E.g., \i y = ax -\- h, then y is produced by performing a certain opera-

tion upon X, viz. multiplying it by a and adding h to the product. The

inverse operation consists in expressing x in terms of y, and this is done

by subtracting I from y and dividing the difference by a.

1



2 DIFFERENTIAL CALCULUS [Int.

Again, if y = sin a;, then x = sin-^?/, which is variously read, " x is the

angle whose sine is y" "a: is the inverse sine of 3/," "a: is the anti-sine

of y." The relation between the direct and inverse operators may be

shown by the identity

sin (sin-i?/) = y,

which expresses the truism that y is the sine of any of the angles whose

sine is y.

Similarly, 2 = logg 9, which is read the logarithm of 9 to the base 3,

hence 9 = logg"^ 2, read the anti-logarithm of 2 to the base 3;

in which as before the operating symbol logg is transferred from one

member to the other by annexing the index of inversion ( — 1), in con-

ventional analogy with the familiar transference of a multiplier in such

equations as 3/ = mxj x = m~^y. Here m~^ has a meaning in itself; but

log3~i has no meaning unless followed by a number. Thus (log3 2)-i and

logg"^ 2 have distinct meanings ; the former inverts the number logg 2,

while the latter inverts the operator logg.

Two operations are said to be successive when one is per-

formed upon the result of the other ; e.g., log sin a; means :

take the sine of x and then the logarithm of sin x.

Successive operations are called commutative when their

sequence may be altered without changing the result.

Thus any successive operations of multiplication and division are com-

mutative ; e.g., a-b-c - - = a c«&; but taking the sine and the loga-
d d

rithm are not commutative, for sin log x ^ log sin x.

Another property of certain operations may be first illus-

trated numerically

:

3(12 + 6) = 3 . 12 + 3 . 6,

122x62 = (12x6)2.

In the first illustration, the result of multiplying 12 + 6

by 3 is the same whether the number 12 and 6 be first

added, and then their sum be multiplied by 3, or 12 and 6 be

multiplied separately by 3, and the results added. In the

second illustration, the operation of squaring may be per-
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formed upon the separate factors, and the results multiplied,

or it may be performed after the multiplication.

These facts are expressed by saying that multiplication is

distributive as to addition, and that involution is distributive

as to multiplication.

The general definition of distributive operations may now

be stated as follows :

If one operation consists in combining several elements

into one result, a second operation is distributive as to the

first when the final result is the same, whether the second

operation be performed upon the result of the first opera-

tion, or upon the several elements of the first operation, and

then these results combined by the first operation.

Since (12x6) + 3 is not equal to (12 + 3)(6 + 3), and log (216 + 36)

is not equal to log 216 + log 36, hence addition is not distributive

as to multiplication, nor taking the logarithm, as to addition.

3. Expressions. Any combination of letters and symbols

used to denote a number is an expression. It may be called

an expression or a number, according as the thought is of

the symbol, or of the value which the symbol represents.

An expression is algebraic when there are implied no other

operations upon the numbers of which it is composed than

algebraic operations, and when none of these operations is

repeated an infinite number of times. An infinite series

involves, in general, only the operations of addition and

multiplication, but it is not called an algebraic expression.

E.g., 3 X, 4 2/ + 17 xyz, a\ y^ + x^, y/Wdfiy^ are algebraic expressions.

Expressions which imply other operations than a finite

number of algebraic ones are called transcendental expres-

sions.

E.g., sin x, 7*, log (2 2: + ?/), are transcendental expressions.

DIFF. CALC. 2
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An algebraic expression is rational^ when it does not con-

tain radicals ; surd^ or irrational, when it contains radicals

or fractional exponents ; entire, or integral, when it has only

a numerical denominator. An expression may be integral

as to some of its letters, and fractional as to others.

E.g., ^
~— ;^-^ is integral as to x, y, b, but fractional as to a and
a — 4c

to c.

An expression is symmetric as to any of its letters, when

its value remains the same, however these letters be inter-

changed.

E.g., xyz, x -\- y -\- z are symmetric as to x, y, z, or to any two of them

;

w + X — y — z\s> symmetric as to w and x, and as to y and z, but not as to

x and y, w and y, w and z, nor x and z.

An expression is said to be transformed when it is changed

in form but not in value ; it is developed or expanded when

transformed into a series.

4. Functions. If a number is so related to other numbers

that its value depends upon their values, it is a function of

those numbers ; the function is explicit when directly ex-

pressed in terms of those numbers ; implicit, when not so

expressed.

Thus y is an explicit function of x when the equation of

relation between x and y is solved for y.

The numbers upon which the value of the function depends

are called the arguments of the function.

E.g., in u = 3xy, u is an explicit function of the arguments x and y,

X is an implicit function of the arguments w, y, y is an implicit function

of the arguments u, x.

Again, if the letters x, y, z be related to each other by means of such

an equation as z^ + xy'^ + i yx -\- 5 x^ = 0,

then each letter is an implicit function of the other two.
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An explicit function of one or more numbers is known,

given, or determined in terms of those numbers. It is sym-

metric, algebraic, rational, transcendental, etc., according

as the expression which gives it its value is symmetric,

algebraic, etc.

E.g., a y =
^

, then y is irrational in b, symmetric as to m and

n, transcendental as to x, algebraic as to m, n, a, b, also as to c when x is

commensurable.

If one number (or function) depends on its arguments in

the same way as another number depends on its arguments

;

I.e., if the expressions involved are of the same form, then

the first number is said to be the same function of its argu-

ments as the second number is of its arguments.

E.g., if ax^ + &x = c, dy^ -^ ey =f,

then c is the same explicit function of a, b, x as / is of d, e, y; and x is

the same implicit function of a, b, c as y is of d, e,f.

A function may be denoted by any convenient letter or

symbol, as /, jP, 0, ••• with or without indices, and followed

by the argument, inclosed in parentheses. During any

investigation the same functional sj^mbol will stand for the

same operation or series of operations.

E.g., if f{x) = a;2 - ax, then /(y) = y^ - ay, f{xy) = xV - a^U-

If
(f)

(x, y^= (j> (?/, ic), then (Art. 3) (/> is a symmetric func-

tion of X and y.

li y = F{x), X is often denoted by F-'^(y')., and is called

the inverse ^-function of y. This notation is illustrated in

connection with " inverse operations " in Art. 2.

EXERCISES

1. If f(x, y) = ax2 + bxy + cy'^, write f{y, x)
;
/(z, x)

; f{y, y).

2. What relation must exist between the coefficients in exercise 1 to

make it a symmetric function ?
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3. If <^ (a:, y) = 4 ary + x2 + a; + 4 y - 7, show that <^ (1, 2) = <^ (2, 1).

Does this prove ^ (2-, y) to be a symmetric function?

4. Let }p{x,y)^Ax + By +C. Show that ^ {x, y) = 0, xj^ (y, - x) =
are the equations of two perpendicular lines.

What curves are represented by

5. If /(x) = 2 X Vl - x^, show that fisin ^\ =sina;.

Find the value of /(cos-V

6. What functions satisfy the relations

<fi (x -\- y) = <f>
(x) • (ji (y) ? exponential functions.

/(^) + fOj) = fi^y)
' logarithms.

if;(2x) =2il,{x)Vl -lij,{x)Y? sine.

2_XM.X (2 X) = —^^XA^i^? tangent.

7. If /(ar) = a:2 + 3, and i^(a:) = 2 - v^, find/[F(a:)], and F[f(x)^-

8. In the last example, find /[/(x)] or/2(a:), F[F(x)] or F2(a:),

/-i(x),F-i(x).

9. With the same notation, calculate /2 + 2fF - 3 F^.

^^. show that _^(-^)-<^C.v) ^ ^-y
.10. If <^(x) = i, show that

x + 1 l + <li{x)-<j>(ij) 1-hxy

Given f(x) = log f^, show that f(x) -V f{y) =/(f±X)
1 + a: \1 -\- xy I

12. If y (x) = VI - x2, what is /(Vl -x2)?

Does it follow that if ^ (x) = ?/, <^(^) = x?

Give examples of cases in which this is not true ; in which it is true.

13. If f{xy) =f{x) +f(y), prove that /(I) = 0.

14. If/(x + y) = f{x) -\-f(y), show that/(0)= 0, andp/(x) = /(jox),

where p is any positive integer.

15.' Using the same function as in the last example, proTe that

f(mx) = mf(x), where m is any rational fraction.

16. If ^ = logs (x + Vl + x2), express x as a function of y.
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17. Giveii/(x)=a*, find /(a), /(I), /(O) ; show that in this func-

tion [/(a:)] ^ =/( 2 x).

18. Given xy — 2x-\-y = n'j show that y is not a function of x when
n = 2.

2r — 1
19. U y = <f)(x) = -, show that x = <f}(y), and that x = <f>\x).

o X — ^

1 + X
20. If y =f(x) = -^— and z =f(y), find 2 as a function of x.

5. Constants and variables. Usually, during an investiga-

tion, some of the numbers that enter into it preserve their

values unchanged ; while all the other numbers take a series

of different values.

A constant number is one that always remains the same

throughout the investigation.

A variable number is one that changes its value, so that

at different stages it requires different numerals to express it.

The word number will usually be omitted, and the words

constant and variable will be used alone, in problems where

it is necessary to distinguish between them.

If y be expressed in terms of x by the relation 7/ = (^(rr),

then, if a numerical value be given to x, the corresponding

value of ?/ may be computed ; and if another value be given

to a;, a new value can be found for y, and so on. In this

equation, both x and y are variables, but if the value of x at

any instant be given, the resulting value of y is known. In

such a case, x is called the independent variable, and y the

dependent variable. The argument is the independent varia-

ble, the function is the dependent one.

6. Continuous variable ; continuous function. When the

variable, in passing from one value to another, passes through

every intermediate value in order, then it is continuous.
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A function fix) of a continuous variable x is called a con-

tinuous function in the interval from x^atox — h^ii it has

the following properties :

It remains real and finite when x takes any real value

in the assigned interval.

For each value of a:, the function has either a single

value or any number of determinate values.

As X changes from m to n (two arbitrary numbers within

the interval), the function f(x)^ if single-valued,

changes from f(m) to f(n) by passing through every

intermediate value, in order, at least once ; and, if

f(x) is multiple-valued, each value of f(x) changes

'from a particular value of/(m) to a corresponding par-

ticular value of f(n)^ in such a way as to pass through

every intermediate value, in order, at least once.

If, at a value a; = A, any one of these conditions fail, the

function is said to have a discontinuity B,t x = h.

The increment taken by a variable, in passing from one

value to another, is the difference obtained by subtracting

the first value from the second. An increment of x will be

expressed by the symbol Ax.

It is implied in the definition of a continuous function

that for any small increment of the variable, the increment

of the function is also small, and that to the variable an in-

crement can always be given, so small that the correspond-

ing increment of the function shall be smaller than any

number that may be assigned, no matter how small.

E.g., if y =/(r) is a continuous function of x in the vicinity of the

value X = a:,, then corresponding to any number e previously assigned,

another number 8 can ba assigned, such that when Ax remains numeri-

cally less than 8, then Ay =/(ar, + Ax) — f(x^)

shall remain numerically less than e. (For illustrations see Art. 14.)



CHAPTER I

FUNDAMENTAL PRINCIPLES

This chapter treats of the fundamental ideas of a limit

and of an infinitesimal, and uses them to lead up to the

notion of a derivative, with which the Calculus is so largely

concerned.

7. Limit of a variable. If a variable, under its law of

change, can so approach a certain constant that the differ-

ence between the variable and the constant may become and

remain smaller than any number that can be assigned, then

the constant is called the limit of the variable.

This definition applies whether the variable be always

greater or always less, or sometimes greater and sometimes

less than the constant.

E.g., the circumference of a circle is the limit of the perimeter of an

inscribed polygon, and also the limit of the perimeter of a circumscribed

polygon when the length of the sides is made less than any assigned

number. Similarly the area of the circle is the common limit of the

areas of the inscribed and circumscribed polygons.

The slope of a tangent to a curve is the limit of the slope of a secant,

when two points of intersection of the secant with the curve approacli

coincidence.

Thus far the illustrations apply to either the first or second

case, in which the variable is either always less or always

greater than its limit. An illustration of the third case,

wherein the variable may be sometimes greater and sometimes
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less than the constant, is furnished by a decreasing geometric

progression with a negative common ratio.

For instance, consider the series 1, — i, + i, — », •••, in which the

number of terms is infinite. The sum of n terms of this series

approaches f as a limit, when n is taken larger and larger. The first

term is 1 ; the sum of the first two terms is J ; the sum of the first three

is f; of the first four, f; and so on; and these successive sums are

alternately greater and less than |, but any one of them is nearer | than

any sum preceding. By taking terms enough, a sum can be reached that

will differ from | by less than any number that may be assigned; for the

sum of n terms of this geometric series is

hence «« - I = - |(- i)"»

which can evidently be made less than any assigned number by sufficiently

increasing n.

8. Infinitesimals and infinites. A variable that approaches

zero as a limit is an infinitesirnal. In other words, an infini-

tesimal is a variable that becomes smaller than any number

that can be assigned.

The reciprocal of an infinitesimal is then a variable that

becomes larger than any number that can be assigned, and

is called an i7ifinite variable.

E.g., the number (^)'» which presents itself in the last illustration is

an infinitesimal when n is taken larger and larger; and its reciprocal

2" is an infinite variable.

From these definitions of the words " limit " and " infini-

tesimal" the following useful corollaries are immediate

inferences.

Cor. 1. The difference between a variable and its limit

is an infinitesimal variable.

Cor. 2. Conversely, if the difference between a constant

and a variable be an infinitesimal, then the constant is the

limit of the variable.
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For convenience, the symbol = will be placed between a

variable and a constant to indicate that the variable approaches

the constant as a limit ; thus the symbolic form x = a is to

be read "the variable x approaches the constant a as a limit."

The special form a: = oo is read " x becomes infinite."

The corollaries just mentioned may accordingly be sym-

bolically stated thus

:

1. li X = a, then x = a -\- a^ wherein « = ;

2. If a; = a + a, and a = 0, then x = a.

It will appear that the chief use of Cor. 1 is to convert

given " limit relations " into the form of ordinary equations,

so that they may be at once combined or transformed by the

laws governing the equality of numbers ;, and then Cor. 2

will serve to express the final result in the original form of a

limit-relation.

In all cases, whether a variable actually becomes equal to

its limit or not, the important property is that their difference

is an infinitesimal. An infinitesimal is not necessarily in all

stages of its history a small number. Its essence lies in its

power of decreasing numerically, having zero for its limit,

and not in the smallness of any of the constant values it may
pass through. It is frequently defined as an " infinitely

small quantity," but this expression should be interpreted in

the above sense. Thus a constant number, however small it

may be, is not an infinitesimal.

9. Fundamental theorems concerning infinitesimals, and

limits in general. This article will be devoted to a rigorous

treatment of the theory of limits so far as necessary to furnish

a logical basis for the process of differentiation to which

the chapter leads up. Theorems 1-3, which are special

theorems relating to infinitesimal variables, are deduced
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immediately from the definition of an infinitesimal ; and are

then used in conjunction with the corollaries of Art. 8, to

establish the general theorems 4-9 relating to the limits of

any variables.

Theorem 1. The product of an infinitesimal a by any

finite constant, h^ is an infinitesimal; z.e., if

a = 0,

then ka = 0.

For, let c be any assigned number ; then, by hypothesis, a

can become less than - ; hence ha can become less than c, the
k

arbitrary, assigned number, and is, therefore, infinitesimal.

Theorem 2. The algebraic sum of any finite number (n)

of infinitesimals is an infinitesimal or zero; z.e., if

«-0, /3 = 0, ...,

then a 4- /3 + ••• = 0, or =0.

For the sum of the n variables does not at any time ex-

ceed n times the largest of them, but this product is an

infinitesimal by theorem 1 ; hence the sum of the n variables

is an infinitesimal or zero.

Note. The sum of an infinite number of infinitesimals

may be infinitesimal, finite, or infinite, according to circum-

stances.

E.g., let a be a finite constant, and let n be a variable that becomes

infinite; then _,_,—, are all infinitesimal variables; but

—--\
f-

••• to n terms = -
, which is infinitesimal,

n^ n^ n

while - H h ••• to 71 terms = a, which is finite,
n n

and }- — -f ... to n terms = an^, which is infinite.



9.] FUNDAMENTAL PRINCIPLES 13

Theorem 3. The product of two infinitesimal variables

is an infinitesimal ; i.e., if

a=0, yS = 0,

then a/9 = 0.

For, let c be any assigned number < 1 ; then a, )S, can

each become less than c ; hence a/3 can become less than c^,

which is less than c, since c < 1 ; thus a/3 can become less

than any assigned number, and is, therefore, infinitesimal.

Note. From theorems 1-3, it follows that, if

a = 0, yS = 0, 7 = 0,

then aa -[• hl3 + cy -\- djSy + eya + /ay3 + gajSy =

when a, b, c, d, e, /, g^ are finite constants.

Theorem 4. If two variables (x, y) be always equal,

and if one of them {x) approach a limit (a), then the other

approaches the same limit ; i.e., if

X = y^ and x = a^

then y = CL-

For, by Art. 8, Cor. 1,

a; = a 4- a»

in which a = ;

hence y = a + a;

and, therefore, y == ^i

by Art. 8, Cor. 2.

Theorem 5. The limit of the sum of a constant (c) and

a variable (2:) is equal to the constant plus the limit oi: the

variable ; i.e.,

lim (tf + a;) = c + lim x.

For, let a; = a ;
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then a; = a + a, [Art. 8, Cor. 1.

in which « = ;

therefore c-\-x = c-{-a + a^

hence c + x = c -{- a^ [Art. 8, Cor. 2.

i.e.^ lim (c-\-x)=c-\-a = c-{- lim x.

Theorem 6. The limit of the product of a constant and

a variable is equal to the constant multiplied by the limit of

the variable ; i.e.,

lim ex = c lim x.

For, using the notation of theorem 5, and multiplying by <?,

ex = ca -{- ca\

therefore ex = m, [Art. 8, Cor. 2.

I.e., lim ex = ca = c\\m. x.

Theorem 7. If the sum of a finite number of variables

(a;, ^, ...) be variable, then the limit of their sum is equal to

the sum of their limits ; z.e.,

lim (a; -f ?/ + ...)= lima; + lim^ + ....

For, let X = a, y = 5, ...

;

then a; = a 4- «, y — h -\- ^^ ..., [Art. 8, Cor. 1.

wherein a = 0, /S = 0, ...
;

hence a; + t/ + ••• =(« + h + ••.) + (« + /? + •••);

but a + /3 + ...=0,

by theorem 2 ; hence, by Art. 8, Cor. 2,

lim (a; + «/ + •..)= a + 5 + ... = lima: + lim ?/ + ....

Note. The limit of the sum of an infinite number of

variables may not be equal to the sum of their limits. (Cf.

Th. 2, Note.)
I

1 1 O 1 Q
E.g., when n = co, the sum of the limits of - H , 1- —

,

1
—

-, .••,

- 2 n^ 2^ n^ 2^ v?"

—- H , is 1 ; but the limit of their sum is ii.
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Cor. If the sum of a finite number of variables (a;, y, z, . . .)

be constant, then this constant (c) is equal to the sum of their

limits ; i.e., if

a; + y + 2 + ••• = c,

then lim x + lim ^ + lim z -{-"• = c.

For, by transposition,

«/ + 2 H = c — x;

hence, by theorems 4, 7, and 5,

lim 7/ + lim js -\- • • • = lim (<? — x)= c — Yitqx;

therefore lima; + limy + lim z + ••• = c. [Cf. Ex. 2, p. 49.

Theorem 8. If the product of a finite number of variables

(a;, y, ^, ...) be variable, then the limit of their product is

equal to the product of their limits ; i.e.,

limxi/z ••• = lim a; limy lim z*'*.

For, using the previous notation, and taking the case of

three variables,

= abc + aby -\- hca + caff + bay + caff + affy + affy ;

hence, by theorems 1, 2, 3, and Art. 8, Cor. 2,

lim xyz = abc = lim x lim y lim z.

Cor. If the product of a finite number of variables

(a;, y, z) be constant, then this constant is equal to the prod-

uct of their limits ; i.e., if xyz = c, then lim a; lim y lim z = c.

For, let w be any other variable, then

xyzio — cw\

hence, by theorems 4, 6, 8,

lim X lim y lim z lim w = c lim w\

therefore lim x lim y lim z == c. [Cf. Ex. 2, p. 49.
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Theorem 9. If the quotient of two variables (a:, ?/) be

variable, then the limit of their quotient is equal to the

quotient of their limits, provided these limits are finite

;

V X lima;
I.e., Lm- = -

y limy

For, since x= -- y^ hence by theorems 4, 8,

y

lim a; = lim — • lim ?/;

y

therefore lim - =
y lllll^/

CoK. 1. If the quotient of two variables (a:, y') be con-

stant, then this constant (<?) is equal to the quotient of theii

limits;

.£ X ,1 lima;
i.e.^ii - = c-, then- = c.

y limy

For, since x = cz/, hence by theorems 4, 6,

lim x = c lim y,

lim X
therefore

limy

Cor. 2. The limit of the quotient of a constant (<?) and

a variable (a;) is equal to the constant divided by the limit

of the variable;

i.e.. lim- =
x lim X

For, let - = y, then c = xy, and by theorem 8, Cor.,
X

c = lim a; limy;

therefore lim y = ; that is, lim - =
lim X X lim x
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10. Comparison of variables. Some of the principles just

established will now be used in comparing variables with

each other. The relative importance of two variables that

are approaching limits is measured by the limit of their

ratio.

Definition. One variable (a) is said to be infinitesimal,

infinite, or finite, in comparison with another variable (x)

when the limit of their ratio (a : x') is zero, infinite, or finite.

In the first two cases, the phrase " infinitesimal or infinite

in comparison with " is sometimes replaced by the less pre-

cise phrase "infinitely smaller or infinitely larger than." In

the third case, the variables will be said to be of the same

order of magnitude.

The following theorem and corollary are useful in com-

paring two variables

:

Theorem 10. The limit of the quotient of any two

variables (rr, y) is not altered by adding to them any two

numbers (a, /3), which are respectively infinitesimal in

comparison with these variables (x, t/};

i.e.,
'

lim^-±4 = lim-,
1/ + ^ y

provided -=0, ^ = 0.
X y

For, since
x-^ a

i +
"

^ + /S y ^^^'

hence, by theorems 4, 8,

,. X-\-(t ,. X ,. x
lim -pz = lim - • lim tt ;

y
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but, by theorems 9, 5, and hypothesis,

1+^
km =

1/

= 1;

= lim
X

y
therefore,

Cor. If the difference (8) between two variables (a:, y)
be infinitesimal as to either, the limit of their ratio is 1, and

conversely;

i.g., if ^Zll^o, then- = l. \
y y

For, since x — y — h^ then x = y -\-h^

and lim- = lim^-^^= limf 1 + - )= 1.

y y \ yJ

Conversely, if - = 1, then ^~ ^ = 0.

y y

For, by Art. 8, Cor. 1,

^-1 = 0; z.e.,^lll = 0.

y y

U. Comparison of infinitesimals, and of infinites. Orders

of magnitude. It has already been stated that any two

variables are said to be of the same order of magnitude

when the limit of their ratio is a finite number; that is to

say, is neither infinite nor zero. In less precise language,

two variables are of the same order of magnitude when

one variable is neither infinitely larger nor infinitely smaller

than the other. For instance, k^ is of the same order as yS

when k is any finite number; thus a finite multiplier or
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divisor does not affect the order of magnitude of any

variable, whether infinitesimal, finite, or infinite.

In a problem involving infinitesimals, any one of them, «,

may be chosen as a standard of comparison as to magnitude;

then a is called the principal infinitesimal of the first order

of smallness, and its reciprocal a~^ is the principal infinite of

the first order of largeness ; a^ is called the principal infini-

tesimal of the second order of smallness, and its reciprocal

oT^ is the principal infinite of the second order of largeness.

In general, a" is called the principal infinitesimal of order n,

when n is either a positive integer or a positive fraction;

but when n is any negative number, a" is the principal

infinite of the corresponding positive order (— w). An
infinitesimal or infinite of order zero is a finite number.

Besides the principal infinitesimal (a") of the nib. order,

there are many other infinitesimals of the same order of

smallness, for instance, any infinitesimal of the form ^a",

in which k is any finite multiplier.

To test for the order (n) of any given infinitesimal (y8)

with reference to the standard infinitesimal (a) on which

it depends, it is necessary to select an exponent w, such that

^^^ l— = Jc, some finite constant.
a = ^n

E.g., to find the order of the variable 3 a:* — 4 a:^, with reference to

r as the base infinitesimal.

Comparing with x^, x% x\ in succession

:

lim 3x^-4x3 ^ lim ^Sx'-ix)= 0, not finite

;

lim 3x4 — 4a;8 jij^ a a 'i.

lim 3 a:* — 4 x^ lim
_^q(3 ) = oo, not finite

;

07 = a;4

hence 3 a:* — 4 a:^ is an infinitesimal of the same order of smallness as a:*
;

that is, of the third order.

DIFF. CALC. —

3
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The order of largeness of an infinite variable can be

tested in a similar way. For instance, if x be taken as the

base infinite, let it be required to find the order of the variable

3 a:^ — 4 ar^. Comparing with a^ and x'^ :

lim 3a;4-4a::3 ^j^

ar = CO ^3 a: = CO
a;3

(3a: -4)= 00

;

lim ^x'^ — At^ lim /^q _ i\ o .

X = CO ^4 X = CO
X^ ^ = ^\ X

hence 3 a;* — 4 a:^ is an infinite of the same order of large-

ness as a:*, that is, of the fourth order.

The process of finding the limit of the ratio of two in-

finitesimals is facilitated by the following principle, based

on theorem 10 of Art. 10 : The limit of the quotient of two

infinitesimals is not altered by adding to them (or subtract-

ing from them) any two infinitesimals of higher order, re-

spectively.

„ lim _3x2j^_ Y\m 3x2 _ 3

This principle is sometimes called " the fundamental theo-

rem of the Differential Calculus," owing to its use in the

" fundamental problem " stated in Art. 15.

12. Order of magnitude of expressions involving infinitesi-

mals or infinites.

Theorem 11. The product of two infinitesimals is another

infinitesimal whose order is the sum of their orders.

For, let y8, 7 be infinitesimals of orders w, n, with refer-

ence to the base infinitesimal a; then, by definition,

^lV^„^ = 6,
^^'\ ^ = (7, where h, c are finite

;
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hence, multiplying and using theorem 8,

im _P7_ _ 7 ^ finite number,
a = U ^w+n ' '

therefore fiy is an infinitesimal of order m-\-n.

Cor. 1. The product of two infinites is another infinite

whose order is the sum of their orders.

For, let /5, y be infinites of orders m, n ; then, since the

principal infinites of these orders are «"% a"",

lim _i lim 7 _ ^
OL yj rsf

— "• \* V yy

therefore V"r.
^"^ = hc^ a finite number

;

a = .^-(m+rt)a

hence 0y is of the same order as a~^"'+"\ that is, an infinite

of order m-\-n.

Cor. 2. The product of an infinitesimal of order m by

an infinite of order n is an infinitesimal of order m— n when

m>n\ but it is an infinite of order n — m when n > m.

For, since """0- = *' I'\— = <=-'

hence j™ ^ = 5, = J™ ^Z,,

therefore when m>n, /3y is an infinitesimal of order m — n,

and when n > m, y^y is an infinite of order n — m.

Theorem 12. The quotient of an infinitesimal of order

m by an infinitesimal of order n is an infinitesimal of order

771 — 71 when m>n; but it is an infinite of order n — m
when n > m.

For, since J'i"o4 = *' a-"'o^ = <'.



22 DIFFERENTIAL CALCULUS [Ch. 1.

therefore, dividing and using theorem 9,

lim 7 ^ ^ ^ lim 7 »

a =: (x*"-" (J
a = ^-(»-»»)

'

hence ^ is an infinitesimal of order m — n, when m>n^ and
7

it is an infinite of order n — m, when n>m.

Cor. 1. The quotient of an infinite of order m by an

infinite of order n is an infinite of order m — n^ when m>n;
but it is an infinitesimal of order n — m when n^m.

Cor. 2. The ratio of two infinitesimals is finite, infini-

tesimal, or infinite according as the antecedent is of the

same order, a higher order, or a lower order, than the conse-

quent.

Cor. 3. The ratio of two infinites is finite, infinitesimal,

or infinite according as the antecedent is of the same order,

a lower order, or a higher order, than the consequent.

Theorem 13. The order of an infinitesimal is not altered

by adding or subtracting another infinitesimal of higher

order.

For, let /?, 7 be two infinitesimals of order w, w, in which

m < 71, then

lim _^_7 lim 7__^
a = a'n"^' a = «« ""

'

and lim ^^-^ = lim^ + limX [Th. 7

but -^ is an infinitesimal of order n — ?w, by theor. 12;
a

thus lim -^ = 0,
7
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and lim
/3 + 7 lim ^ = 5,

therefore yS + 7 is an infinitesimal of the same order as yS.

Note. The order of an infinitesimal is not altered by

adding, but may be altered by subtracting, another infini-

tesimal of the same order and sign.

For instance, let yS = 3 a^ 4- 4 a^^ of second order,

y = 3 a^ _ 2 a3, of second order,

then )8 + 7 = 6 a^ -f 2 a^^ of second order,

but y8 — 7 = 6 a3, of third order.

Cor. The sum of a finite number of infinitesimals of the

same sign is an infinitesimal of an order equal to the lowest

order among the infinitesimals summed.

Theorem 14. The order of an infinite is not altered by

adding or subtracting another infinite of lower order.

Note. The order of an infinite is not altered by adding,

but may be altered by subtracting, another infinite of the

same order and sign. (Proof and illustration as above.)

Cor. The sum of a finite number of infinites of the

same sign is an infinite of an order equal to the highest

order among the infinites summed.

Theorem 15. The limit of the finite sum of any num-

ber of infinitesimals is not altered by replacing any infini-

tesimal by another that bears to it a ratio whose limit is

unity.

For, let «i 4- a2 -^ + "«'

be the sum of n infinitesimals of such a nature that as n in-
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creases, each term so decreases that the limit of the sum is

finite.

Let there be n other infinitesimals,

PV) P2' ***' Pn')

so related to the first set that

Um^i = 1, lim^2 ^ 1^ ... Y^^§n ^ I
«i «2 ««

then

fl=l + ei, f?=l + e„
•••f-"

= l+^«' [ei = 0, e, = 0...

and ^1 = ttj + ei«i, /Sg = "g + ^2'^2' *••
/^n = «« + f««».

hence

/5i+ /i?2+ --+A=(«i+ «2+ ••• +a„) + (ei«j+ e2«2+ ••• +^«0-

Next let 77 be an infinitesimal that is numerically equal to

the largest of the e's,

then e^a^ + e^a^ + ••• + 6„a„ |<| rj (a^ + ^3 + ••* + ««)»*

hence

(^l+^2+-+A)-(«i+ «2+ ... +a„)|<|.;(«i+ «2+ - +««).

Taking limits and remembering that, by hypothesis,

lim (ttj 4- «2 + ' * * + "«) ^^ finite, and lim 97 = 0,

it follows that

lim (/3i + ^82 + ... + /3J = lim («i + «2 + - + ««)•

Note. This theorem may sometimes be conveniently

stated as follows : the limit of the finite sum of infinitesi-

mals is not altered if these infinitesimals be rej)laced by

others which differ from them respectively by infinitesimals

of higher order, f

The symbol |<| stands for " is numerically less than." (See Art. 54.)

t This is called the "fundamental theorem of the Integral Calculus."
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13. Useful illustrations of infinitesimals of different orders.

Theorem 1,
lini sin 6 = 1

lim tan 6
= e

= 1.

Fig. 1.

by geometry,

6 = 0-0

With as a center and OA = r

as radius, describe the circular

SLTcAB. Let the tangent at A
meet OB produced in JD; draw

BC perpendicular to OA^ cutting

OA in 0. Let the angle AOB =
in radian measure,

then arc AB = rO,

CS < arc AB < AD,

i.e., rsin6<rd<rt?in6,

sin 6 <d < tan 6.

By dividing each member of these inequalities by sin 6,

1 < -7^ < sec (9,

but when ^ = 0, sec ^ = 1,

hence ^^'^^ "A^ = 1, aiid ^'\ ?HL? = 1.
^ = Osin^ ^ =^6

Similarly, by dividing the inequalities by tan 6,

e

B D

CA

COS 6 <
tan 6

<1,

hence
lim _e_ ^ ^ ^^^^

lim tan^ _ ^
tan (9 ^ = (9

^ =

Cor. 1. The numbers 6, sin 6, tan ^ are infinitesimals of

the same order.

Cor. 2. The expressions sin 6 — 6^ tan 6 — 6 are infini-

tesimal as to 6,
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Theorem 2. If one angle B^ of a right triangle, be an

infinitesimal of the first order, then the hypothenuse r and

the adjacent side x are either both

finite, or they are infinitesimals of

the same order ; and the opposite

side y. is an infinitesimal of order

one higher than that of r and x.

For — = cos ^, which approaches the value 1 as ^ = ;

r

hence a:, r are infinitesimals of the same order ; which may

be the order zero.

Also ?/ = r sin 6^

and sin 6 is of order 1 ; therefore y is of order one higher

than r.

Cor. In the same case, if 6 be of the first order, and if r

and X be of the order w, then the difference between r and x

is an infinitesimal of order n + 2.

r^ sin^
For r^ — a:^ = 2/2 = r^ sin^ ^, r — x

r + X

but the orders of r^, sin^ 0^ r + x, are respectively 2 w, 2, w

;

.
•

. r — X is of order

2w4-2-n = ri + 2.

Theorem 3. The difference between the length of an

infinitesimal arc of a circle and its chord is of at least the

third order when the arc is the first order.

For, let CD be the arc, and CB^ DB, tangents at its ex-

tremities ; then

chord CD < arc CD < DB + BC.

Let the angle BOD = ^ be taken as the principal infini-

tesimal ; then, since arc CD = 2 r^, and r is finite, hence

arc CD is of order 1.
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Fig. 8.

Again, since AD is of

order 1 (Th. 1, Cor. 1),

and angle ADB = ^ is of

order 1, hence DB is of

order 1, and DB - DA is

of order 3 (Th. 2, Cor.);

.
•

. arc CD — chord CD is

of order, at least, three.

Theorem 4. The difference between the length of any-

infinitesimal arc (of finite curvature), and its chord, is an

infinitesimal of, at least, the third order.

Note. The curvature is said to be finite when the limit-

ing ratio of the length of a small chord to the external angle

between the tangents at its extremities is finite, and not zero.

Thus, in the present case, the chord PQ and the angle

TSP are, by hypothesis, infinitesimals of the same order.*

Let the angle TSF be the

principal infinitesimal ; then,

since

TSF = SQR 4- it^S,

it follows that the greater of

the latter two angles, s?ij BQS^
is of the first order, while the

other may be of the first or

a higher order. Also, the

greater of the two segments

BQ, PB, say the latter, is of

the first order, while BQ may
be of the first or higher order.

* If TSP were of higher order than PQ, the curvature would be zero ; if

of lower order, the curvature would be infinite ; the former is the case at an

inflection, the latter at a cusp.

Fig. 4.
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Again, by theorem 2, QR, QS are of the same order, and

PR, PS are of the same order.

Now arc QP - chord QP <QS -\- SP - QP, [geom.

i.e., <(QS -QR)-hiiSP - RP);

but since QS -QR =QSC1 - cos 0) = 2QS sin2 1,

and, similarly, SP-RP=2SP sin2 ^,

and, since each of these products is, at least, of the third

order, hence arc QP — chord QP is of, at least, the third

order.

EXERCISES

1. Let ABC be a triangle having a riglit angle at C ; draw CD per-

pendicular to AB, DE perpendicular to CB, EF perpendicular to ])B,

FG perpendicular to EB\ let the angle BAC be an infinitesimal of the

first order, AB remaining finite. Prove that:

CD, CB are of order 1

;

DB, DE are of order 2

;

EB, EF, {CB - CD) are of order 3

;

^ FB, FG, (DB- DE) are of order 4.

2. Of what order is the area of the triangle ABC^ BCDl CDEl

3. A straight line, of constant length, slides between two rectangular

straight lines, CAA', CB'B] let AB, A'B' be two positions of the line.

Show that, in the limit, when the two positions coincide,

AA' ^ CB
BB' CA

'

14. Continuity of functions. From the foregoing theorems

on limits, and the definition of a continuous function, the

following theorems relating to continuity are easily derived,

and applied to the ordinary classes of functions.

Theorem 1. If a variable approach a constant, as a limit,

according to any given laAV, then any function of the variable
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approaches the same function of the constant as a limit if

the function be continuous for values of the variable in the

vicinity of the constant.

Let /(a;) be a continuous function of x, for values of x

near a ; then when x = a from either side

fCx)= f(a},

regard being had to correspondence of multiple values, if any.

For, let X = a -\- h,

where h=0; then /(« + ^) — /(^)

can be made less than any assigned number from the defini-

tion of a continuous function (Art. 6) ; hence

f(a + h-) = f(x-)= /(ay.

Ex. Prove lim f(x) =/(liin x), i.e., the operators/, Urn, commutative.

Cor. Conversely, any function, /(a;), is continuous in

the vicinity oi x = a, if, when x = a, f (x) remains real and

= /(^)i a finite constant.

Theorem 2. If y = f(x') be a continuous function of x

in the vicinity of a; = «, then the inverse function

is a continuous function of y in the vicinity of the value

For y = f (x) can be represented by a curve which is

continuous at (a, 6), and

^ = /-'(y)

is represented by the same curve in the vicinity of (a, 5).*

Cor. If /(:.) = /(«),

then one value of x approaches the limit a.

* A rigorous algebraic proof of the continuity of an inverse function will

be found in the appendix.
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Theorem 3. If two functions be continuous at x = a,

then their sum, difference, and product are continuous func-

tions at a; = a, and also their quotient, provided the denomi-

nator does not vanish at x= a. This follows from Th. 8, 9,

Art. 9.

Cor. 1. The product of any finite number of functions,

each of which is continuous at a: = a, is continuous at x = a.

Cor. 2. If </> (x} be continuous, and (a) ^ 0, is

continuous at x = a. 9\ J

Theorem 4. The algebraic function a;", in which n is

any commensurable number, is continuous for all values of x

not infinite.

(1) Let 71 be a positive integer; then theorem 3 applies.

(2) Let n be the reciprocal of a positive integer ; and let

1

y = x^,

then x = ^^;

hence, by (1), x is a continuous function of ?/, and by theorem

2, ^ is a continuous function of x.

(3) Let 71 be a positive fraction, - ; then x^ is continuous

by (2), and (a:')^ is continuous by (1).

(4) Let n be any negative commensurable number ; then

corollary 2 of theorem 3 applies.

Cor. a rational integral function is finite and continuous

for all finite values of the variable. (Theorems 3, 4.)

Lemma. When x approaches zero as a limit, then the

exponential function a^ approaches unity as a limit

:

t.g., if a: = 0, then a^ =1,
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For, let h be any assigned positive number, and let a: = -, in

which n can become as large as desired ; then it is evidently

possible to choose n so large that (1 + A)" shall exceed the

number a (if n be first supposed positive),

i.e., (l-{-hy>a,
1

and l-\- h>a\
hence a^ — 1 <,h.

Thus the exponent x has been chosen so small that a'^ — 1

is less than the assigned number, i.e., a^ — 1 = 0, and a^ = 1,

when x = from the positive side. The proof for the nega-

tive approach follows from the identity a~^ • a^ = 1, and

theorem 9, p. 16.

Theorem 5. The exponential function a^ is a continuous

function of x, when x is not infinite, provided a is positive,

i.e., a^+'» — a^ = 0, when h = 0.

For a^-^'^ - a^ = a^ (a" - 1),

but a'^ — 1 = 0, when h = 0, by lemma,

hence a^"*"'^ — a^ = 0, when ^ = 0,

and a^ is a continuous function of x.

Theorem 6. The function log^a; is continuous when x

lies between zero and positive infinity where a is positive.

For, let t/ = logaX,

then x = a^;

hence, by theorem 5, a; is a continuous function of ^, when 2/

lies between — oo and + oo, that is x between and + oo.

Therefore, by theorem 2, ^ is a continuous function of x,

when X lies between and + oo.
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Cor. 1. If w, V be two continuous variables, then u"" = a^

when w = a, where a is positive, and v = 5.

For log u = log a,

and, since v = h,

hence v log u = h log a,

that is, log u'' = log a*,

therefore -w* = a^ when u = a, v = b. [Th. 2, Cor.

Cor. 2. If w, z; be continuous functions of x, u^ is a con-

tinuous function of x. (Th. 1, Cor.)

Cor. 3. If a: be a continuous variable, x^ is a continuous

function of x, when n is either commensurable or incom-

mensurable. This corollary is a generalization of theorem 4.

Theorem 7. The functions sin x, cos x are continuous for

all finite values of x ;

i.e., sin (a; + A) — sin a; = 0, when ^ = 0,

for sin (a: + A) — sin a? = 2 cos (a: 4- J ^) sin ^ h,

but sin ^h = when A = 0, and cos (a; + | h) is not infinite,

hence sin (a; -f- A) — sin a; = when A = 0,

that is, sin a; is continuous.

Similarly for cos x.

EXERCISES

1. Prove that tan x, sec x are continuous functions of x for all values

except X = l(2n + 1) -/r, n being any integer.

2. Prove that cot x, esc x are continuous functions of x for all values

except X = nTT, n being any integer.

3. I'ind the bounds of continuity of each inverse trigonometric func-

tion. Draw the graph, and show the continuity of each of the multiple

values.
1

4. Show that 2* is not continuous at x = 0. Let x successively

approach zero from positive and negative values.
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15. Comparison of simultaneous infinitesimal increments

of two related variables. The last few articles were con-

cerned with the principles to be used in comparing any two

infinitesimals. In the illustrations given, the law by which

each variable approached zero was assigned, or else the two

variables were connected by a fixed relation; and the object

was to find the limit of their ratio. The value of this

limit gave the relative importance of the infinitesimals.

In the present article the particular infinitesimals com-

pared are not the principal variables (a;, ?/) themselves, but

simultaneous increments (A, k) of these variables, as they

start out from given values (a^j, ^/j) and vary in an assigned

manner; as in the familiar instance of the abscissa and

ordinate of a given curve.

The variables x, y are then to be replaced by their equiva-

lents 2^1 -f- ^, ?/i + ^ ; in which the increments A, k are them-

selves variables, and can, if desired, be both made to approach

zero as a limit ; for since y is supposed to be a continuous

function of x^ its increment can be made as small as desired

by taking the increment of x sufficiently small.

The determination of the limit of the ratio of h to A, as h

approaches zero, subject to an assigned relation between x

and y^ is the fundamental problem of the Differential

Calculus.

E.g.^ let the relation be

y = x^',

let x^y y^ be simultaneous values of the variables a;, y ; and

when x changes to the value x-^ + A, let y change to the

value y^-{-h\ then

y^J^k = {x^^ hy = X^^ + 2x^h + hh

hence k = 2 x-Ji + ¥•,
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This is a relation connecting the increments A, k.

Here it is to be observed that the relation between the

infinitesimals A, k is not directly given, but has first to be

derived from the known relation between x and y.

Let it next be required to compare these simultaneous

increments by finding the limit of their ratio when they

approach the limit zero.

By division,

n

hence, by Art. 9, theorem 5,

lim k Q

This result may be expressed in familiar language by

saying that when x increases through the value a:^, then y
increases 2 x^ times as much as x ; and thus when x continues

to increase uniformly, t/ increases more and more rapidly.

For instance, when x passes through the value 4, and y
through the value 16, the limit of the ratio of their incre-

ments is 8, and hence t/ is changing 8 times as fast as x ; but

when X is passing through 5, and y through 25, the limit of

the ratio of their increments is 10, and «/ is clipvnging 10

times as fast as x.

The following table will numerically illustrate the fact

that the ratio of the infinitesimal increments A, k approaches

nearer and nearer to some definite limit when h and k both

approach the limit zero.

Let a?!, the initial value of x^ be 4; then y^, the initial

value of y, is 16. Let A, the increment of a:, be 1 ; then k,

the corresponding increm^ent of ?/, is found from

16+A: = (4 + 1)2;
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k
thus A; = 9, and y = 9. Next let h be successively diminished

h

to the values .8, .6, .4, ... ; then the corresponding values of

k
k and of - are as shown in the table

:

h

x = i + h y = m + k k
k
h

4+ 1 25 9 9

4 + .8 23.04 7.04 8.8

4 + .6 21.16 5.16 8.6

4 + .4 19.36 3.36 8.4

4 + .2 17.64 1.64 8.2

4 + .1 16.81 .81 8.1

4 + .01 16.0801 .0801 8.01

4 + ^ 16 + 8A + A2
•

8-t-A

Thus the. ratio of corresponding increments takes the

successive values 8.8, 8.6, 8.4, 8.2, 8.1, 8.01, .••, and can be

brought as near to 8 as desired by taking h small enough.

As another example let the relation between x and y be

then y^ = x^^,

Of, + ky = (X, + A)8,

hence, by expansion and subtraction,

2y^k + k^ = d x^% + 3 x^Ji^ + ^»,

ib (2 ^, + ^) = ^ (3 Xi2 + 3 Xi^ + ^2)^

^ _ 3 Xj2 + 3 x^h + A2

Therefore

and, by Art. 10, theorem 10,

h '2y^ + k

,. k ,. 3x2 + 3x,A + ^2
lim

-J-
= hm —^r ^

,

h 2y^ + k
A = O.I::=0,

h 2y^

DIFF. CALC. —

4
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The " initial values " of 2;, y have been written with sub-

scripts to show that only the increments (A, A:) vary during

the algebraic process, and also to emphasize the fact that the

limit of the ratio of the simultaneous increments depends on

the particular values through which the variables are pass-

ing, when they are supposed to take these increments.

With this understanding the subscripts will hereafter be

omitted. Moreover, the increments A, k will, for greater

distinctness, be denoted by the symbols Aa:, Ay, read " incre-

ment of rr," "increment of y." The symbol A is derived

from the initial letter of the word difference^ as the increment

of a variable, in passing from one value to another, is ob-

tained by subtracting the first value from the second.

Ex. 1. lix^ -\-y'^ = a\ find lim
Ax'

Let the initial values of the vari-

ables be denoted by x, ?/,'and let the variables take the respective incre-

ments Ax, Ay, so that their new values x + Ax, y -{ Ay shall still satisfy

the given relation, then

(x + Ax)2 + (2/ + Ayy = a2.

By expansion, and subtraction,

2 X . Ax + (Ax)2 + 2y'Ay-\- (Ayy = 0,

Ax (2 X + Ax) = — Ay (2y + A?/),

Ay _ _ 2 X + Ax
_

Ax

lim Ay
Ax = ^3.

hence

and

Therefore

2y + Ay

lim 2 X + Ax
Ax = 2 y + Ay

The negative sign indicates that when
Ax, and the ratio x:y, are positive. Ay is

negative, that is, an increase in x produces

a decrease in y. This may be illastrated

geometrically by drawing the circle wl

equation is x^ + y2 = a'^ (Fig. 5).

Fig. 5.

Ex. 2. If x2 + y = y2 - 2 X,

2y-l
lim A?/ 2x + 2
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Similarly when the relation between x and y is given in

the explicit functional form

y = <f)(x),

then y -\- Ay =
(f)
(x + A2;),

and Ay = (a; + Ax') — <^ {x) = A
(f)

(a;),

henc3 lim ^ = lim -^C^ + A^) " -^C^)
.

Ax Ax

When the form of is given, the limit of this ratio can

be evaluated, and expressed as a function of x; and this

function is then called the derivative of the function (f)Qx^

with regard to the independent variable x.

The formal definition of the derivative of a function with

regard to its variable is given in the next article.

16. Definition of a derivative.

If to a variable a small increment be given, and if the

corresponding increment of a continuous function of the

variable be determined, then the limit of the ratio of the in-

crement of the function -to the increment of the variable,

when the latter increment approaches the limit zero, is called

the derivative of the function as to the variable.

Let (f> (x^ be a finite and continuous function of x, and Ax
a small increment given to x^ then the derivative of

(f)
(x^ as

to X is

lim j <^ (a; + Ax) - (f)(x) ] ^ Hm A^(x)
Ax = 0\ ^x ]~ Ax=0 ^x

It is important to distinguish between lim —^ and

—:rT-

—

, 7 that is, between the limit of the ratio of two
lim Ax

infinitesimals, and the ratio of their limits. The latter is

indeterminate of the form - and may have any value ; but
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the former has usually a determinate value, as illustrated in

the examples of the last article.

EXERCISES

1. Find the derivative of a:^ — 2 a: as to x.

2. Find the derivative of 3 x^ — 4 a; + 3 as to a;.

3. Find the derivative of — as to x.
4: X

Q
4. Find the derivative of a:^ — 2 H— as to x.

x'^

17. Geometrical illustrations of a derivative.

Some conception of the meaning and use of a derivative

will be afforded by one or two geometrical illustrations.

Let y = <f>
(x) be a function of x that remains finite and

continuous for all values of x between certain assigned con-

stants a and h ; and let the variables a;, y be taken as

the rectangular coordinates of a moving point; then the

relation between x and y is represented graphically, within

the assigned bounds of continuity by the curve whose equa-

tion is

y = (f,{x).

Let (a:j, ^j), (x^^ y^ be the coordinates of two points

Py, Pg on this curve ; then it is evident that the ratio

^^~^^ = tan a,

wherein a is the inclination angle of the secant line PiP^^

to the a;-axis. Let P^ be moved nearer and nearer to coinci-

dence with Pj, so that x^ = x^, y^^Vi'^ then the secant line

P1P2 approaches nearer and nearer to coincidence with the

tangent line draAvn at the point Pj, and the inclination angle
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Y

t M /. P2{x,,y,)

/^^N

^^ /
1

K T S

Fig. 6.

(a) of the secant approaclies as a limit the inclination angle

(0) of the tangent line.

Hence, by theorem 7,

and Ex. 1, Art. 14,

tan a = tan <^.

Thus ^^~^^ = tan<^,
x^ x^

when x^=x^, yi = yv

This can also be seen

from the similar triangles

KSP^ and P^MP^.

The proportion

P^M^ SP,

MP,^ KS

is true, whatever be the position of P^. When P^ ap-

proaches to coincidence with Pj, P^M= 0, MP^ = 0, but

SP
their ratio approaches -^^, which is tan </>.

TS
It may be observed that if x^ be put directly equal to

a^i, and y^ to y-^^ the ratio on the left would, in general,

assume the indeterminate form -, as in other cases of find-

ing the limit of the ratio of two infinitesimals; but it has

just been shown that the ratio of the infinitesimals y^ — y^,

x^ — x^ has, nevertheless, a determinate limit measured by

tan
(f).

They are thus infinitesimals of the same order except

when (^ is or ^•

If the differences x^ — x^, y^ — y^ be denoted by Aa;, Ay,

then ^2 = ^\ + ^^' y^ = y\^^y\
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but, since ?/ = <^ (a;),

hence the ratio of the simultaneous increments may be

written in the various forms

Ax Xn X-i Xn X-i Ax

In the last form, x is regarded as the independent variable,

and Ax its independent increment; and the numerator is

the increment of the function </)(a^), caused by the change

of X from the value x^ to the value x-^ + Ax. The limit

of this ratio, as Aa; = 0, is the value of the derivative of

the function <^ (a;), when x has the value x-^. Here x^ stands

for any assigned value of x. Thus the derivative of any

continuous function <^ (x) is another function of x which

measures the slope of the tangent to the curve i/ = (j)(^x),

drawn at the point whose abscissa is x.

2
Ex. Find the slope of the tangent line to the curve y = — at the

point (1, 2).
X

Here
. , hm (x + Aa:)2 x^
tan <p = A . n -^

—

_ Hm - 2 (2 a: + Aa:) ^
Ax = x^{x + Axy

Hence tan ^ = — 4, when x = l; and the equation oP the tangent line

at the point (1, 2) is y -2 = - 4:(x - 1). [Cf . A.G., Art. 53.

^ As another illustration, let the

coordinates of P be (x, ?/), and

those of Q,(^x 4- Ax, y H- Ay~) ; then

MN=PR = Ax, and PS=RQ
= Ay. Let the area OAPM be

denoted by 2, then z is evidently

some function of the abscissa x\

also let area OA QN., = 2 + Az, then area MNQP — Az, is the
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increment taken by the function 2, when x takes the incre-

ment Ax; but MNPQ lies between the rectangles MR^ MQ,

hence yAx < Az <(^t/ + Ay^ Ax,

and y <--^<y + Ay,
Ax

Therefore, when Ax^ Ay^ Az all = 0,

T Az
lim— = y.

Ax ^

Thus if the ordinate and the area be each expressed as

functions of the abscissa, the derivative of the area function

with regard to the abscissa is equal to the ordinate function.

Ex. If the area included between a curve, the two axes, and the

ordinate whose abscissa is a:, be given by the equation

z = 3^,

find the, equation of the curve.

Here y = lim ^ = ^^^^ ^ (x + Axy - x^

= Axl [3 ^' + 3 xAx + {Axy\ = 3 x\

18. The operation of differentiation. It has been seen in a

number of examples that when, on -a given function <i>(x)^

the operation indicated by

Um <f>(x + Ax') —
(f>
(x)

Ax = -^

is performed, the result of the operation is another function

of X. This function may have properties similar to those of

(i>(x)-, or it may be of an entirely different class.

The above indicated operation is for brevity denoted by
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d(i)(x)
the symbol \, , and the resulting derivative function by

<l>'(x) ; thus

d(i> (x) _ lim A<^ (x) _ lim <f>(x -\- Ax} — <j> (x} ,f.^
-d^=^x =0-^^ = ^x = ^ = W-

The process of performing this indicated operation is

called the differentiation of <l>(x} with regard to x. The

symbol * —
>, when spoken of separately, is called the differ-

CLX

entiating operator^ and expresses that any function written

after the d is to be differentiated with regard to x^ just as

the symbol cos prefixed to <t>(x') indicates that the latter is

to have a certain operation performed upon it ; namely, that

of finding its cosine.

The process of differentiating <^ (x) consists of the follow-

ing steps

:

1. Obtain <^(a;+ Aa:) by changing x into x+Axin (j>(x).

2. Find A(j>(x) by subtracting ^(a;) from (f>(x-{- Ax).

3. Divide this difference A</> (x) by Ax.

4. Find the limit of the quotient ^ ' when Ax = 0.

This series of steps should be memorized. In words,

these four steps can be expressed as follows

:

1. Give a small increment to the variable.

2. Compute the resulting increment of the function.

3. Divide the increment of the function by the incre-

ment of the variable.

4. Obtain the limit of this quotient as the increment of

the variable approaches zero.

* This symbol is sometimes replaced by the single letter D.
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EXERCISES

Find the derivatives of the following functions : •

1. 5 ?/3 - 2 7/ + 6 as to 3/

;

3. 8 w^ _ 4 ^ ^ 10 as to 2 m
;

2. 7 /2 - 4 f - 11 f3 as to <

;

4. 2 a:2 - 5 a: + 6 as to x - 3.

This process will be applied in the next chapter to all the

classes of functions whose continuity within certain inter-

vals has been established in Art. 14; and it will be found

that for each of them a derivative function exists; that is,

that lim ^ has a determinate and unique value, and

that the curve y = <t>
(x) has a definite tangent within the

range of continuity of the function.

A few curious functions have been devised, which are continuous and

yet possess no definite derivative; but they do not present themselves in

any of the ordinary uses of the Calculus. Again, there are a few functions

for which lim ^^ has a certain value when Ax = from the positive

side, and a different value when Ax = from the negative side ; the de-

rivative is then said to be non-unique. [Cf. Ex. 11, p. 282.]

Functions that possess a unique derivative within an as-

signed interval are said to be differentiahle in that interval.

Ex. Show that a function is not differentiahle at a discontinuity

(Art. 6).

19. Increasing and decreasing functions. A good example

of the use of the derivative is its application to finding the

intervals of increasing or decreasing for a given function.

A function is called an increasing function if it increases

as the variable increases and decreases as the variable de-

creases. A function is called a decreasing function if it de-

creases as the variable increases, and increases as the variable

decreases.

E.g., the function x^ + 4 decreases as x increases from — 00 to 0, but

it increases as x increases from to +00. Thus x^ + 4 is a decreasing
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function while x is negative, and an increasing function while x is posi-

tive. This is well shown by the locus of the equation y = a:^ + 4(Fig. 8).

Fig. 8 Fig. 9.

- shows that - is a decreasing func-
X X

Again, the form of the curve y

tion, as x passes from — oo to 0, and also a decreasing function, as x

passes from to + oo. When x passes through 0, the function changes

discontinuously from the value — oo to the value + oo (Fig. 9).

Most functions are

increasing functions

for some values of the

variable, and decreas-

ing functions for

others.

E.g., y/'2 rx — x^ is an
'°"

increasing function from

X = to a: = r, and a decreasing function from x = r to x = 2r (Fig. 10).

A function is said to be an increasing function in the

neighborhood of a given value of x if it increases as x

increases through a small interval including this value

;

similarly for a decreasing function.



19-20.] FUNDAMENTAL PRINCIPLES 45

20. Algebraic test of the intervals of increasing and de-

creasing. Let y — (f>{x) be a function of x, and let it be real,

continuous and differentiable for all values of x from a to b;

then by definition y is increasing or decreasing at a point

X = x^^ according as

<l>{xi -\- Ax') — i>(xj)

is positive or negative, where Ax is a small positive number.

The sign of this expression is not changed if it be divided

by Aa;, no matter how small Ax may be ; hence <^(a:) is an

increasing or a decreasing function at the value iCj, accord-

ing as

dy^ lim \
<t>(x^ + Ax)-<t)(xi)

dx Ax=0| ^ ]
= 4>'(x{)

is positive or negative.

Thus the intervals in which 4>(x) is an increasing function

are the same as the intervals in which (f>'Qx) is positive.

E.g., to find the intervals in which the function

«^(a:) = 2x8-9a:2+12a:-6

is increasing or decreasing. The derivative is

<i>'{x) = 6x2 - 18x + 12 = 6(x- l)(x - 2);

hence, as x passes from — go to 1, the derived function <i>'(x), is positive

and ^(x) increases from ^(— oo) to <^(1);

i.e., from <^ = — coto<^ = — 1; as x passes

from 1 to 2, <^'(j:) is negative, and ^(x)

decreases from <^(1) to <^(2) ; i.e., from
— 1 to — 2 ; and as x passes from 2 to + co,

^'(x) is positive, and <^(x) increases from

^{'-) to ^(x) ; i.e., from — 2 to + go.

The locus of the equation y = <^(x) is

shoWn in figure 11. At points where

<}>'{x) = 0, the function <^(x) is neither

increasing nor decreasing. At such points

the tangent is parallel to the axis of x.

Thus in this illustration, at a; = 1, a; = 2,

the tangent is parallel to the x-axis. Fia. il.
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EXERCISES

1. Find the intervals of increasing and decreasing for the function

Here <^'(^) = 3x2 + 4a; + 1 = (Ox + l)(x + 1).

The function increases from x=: — cotox = — 1; decreases from x = — 1

to X = — I ; increases from x = — ^tox=rcc.

2. Find the intervals of increasing and decreasing for the function

y = x3-2x2 + x-4,

and show where the curve is parallel to the x-axis.

3. At how many points can the slope of the tangent to the curve

?/ = 2x3-3x2 + l

be 1 ? - 1 ? Find the points.

4. Compute the angle at which the following curves intersect

:

jr = 3 x2 - 1, y = 2 x2 + 3. [Cf. A.G., p. 164.

21. Differentiation of a function of a function. Suppose

that y, instead of being given directly as a function of a:,

is expressed as a function of another variable w, which is

itself expressed as a function of x ; and let it be required to

find the derivative of y with regard to the independent

variable x.

Let y =f(u)^ in which w is a function of x. Suppose

that X passes through an assigned value x^ ; and let u pass

through a corresponding value u^ ; and ?/, in consequence,

through a value y^. When x changes to the value x^ + Ao;,

let u and y, under the given relations, change continuously

to the values u^ + Ai«, y^ + A?/ ; then

Ay _Ay Am _ /(m + Aw)—/(w) Aw^

Ax ^ All, Ax~~ Au Ax^

hence, equating limits,

dy _dy du df(u) du

dx du dx du dx
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in which the combination of values (x = x-^^ u = Wj, t/ = i/^)

is to be substituted.

The derivative of a function of u with regard to x is equal

to the product of the derivative of the function with regard to

w, and the derivative of u with regard to x ; each derivative

being estimated at the same combination of corresponding

values of the three variables.

The given functions may be multiple-valued, such as y = Va^ — u%

u = sin—^ar. Then when any assigned value Xj is given to x, the fuuctions

u and — take multiple values ; let one of the branches of u be specified

;

dx
and let Uj be the value of u on this branch, corresponding to x = Xy

When the value u. is given to m, the functions y and -^ take multiple
du

values; let the value of y on a specified branch be y^. Then, by the

theorem, one of the values of — taken at z = x^, multiplied by one of

d ^^
the values of -^ taken at (x = x,, u = m,), will give one of the values of

d ^"
-^ taken at (x = x^ y = y^, and these are the respective unique values

of the three derivatives taken at the specified combination {x = x^u = Mj,

y = y^. This combination is represented geometrically in three dimen-

sions by one of the points of intersection of the plane x = x^ with the

intersection-curve of the two surfaces that represent the given functions.

Ex.1. Given 3/ = 3m2 - 1, m = 3x2 -}- 4; find ^.
ax

dy ^ du ^

du dx

Ex. 2. Given y = 3u2 - 4m -j- 5, « = 2x8 - 5; find -3^-

22. Differentiation of inverse functions. Relation between

du dx~ and -^. When y = f (x) is a continuous and differen-

tiable function of x, the symbol -^ stands for the numerical
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measure of the limit of the ratio of an increment of y to an

assigned increment of x. Next, let y be taken as the inde-

pendent variable ; then the inverse function x = f~^Cy} is

a continuous function of y ; and if a small increment be

given to y, it is required to find the limit of the ratio of the

resulting increment of x to the assigned increment of y.

Let X, y have the initial values a;^, y-^^ and let the variables

change, subject to the given relation, so as to assume tfhe

values

x^ + Ax, y^-\- Ay;

.1 • Ay Aa: ^
then, since -r^ • -r— =1,

Ax Ay

hence, by the theory of limits (Art. 9, Th. 8, Cor.),

dx_l_
dy~ dy

dx

in which the two corresponding values, x = x^, y = y^, are

understood to be substituted.

Thus if y=:f(x) be a differentiable function of x, the

inverse function x = f~^(iy^ is a differentiable function of

y, and the derivative of x with regard to y is the reciprocal

of the derivative of y with regard to x, each derivative being-

estimated at the same pair of corresponding values of x

and y.

Note. Either variable may be a multiple-valued function

of the other, as in the familiar relation, x^ + y"^ = a^.

When any value x^ is given to x, the functions y and -j-

take multiple values ; and, when the corresponding value y^

is given to y, the functions x and — take multiple values.
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One pair of values of -^ and of -^ will be reciprocal, and

these will be their respective values for the combination

(x = x^, y = yi).

In geometrical language, they will belong to the same point

> (ajj, y-^ of the representative curve.

'Ex. From Ex. 1, p. 36, find the values of -^, — at the four points
dx dy

(±3, ±4) on the circle a;^ + ^2 _ 25 ; and write down the equations of the

four tangents.

MISCELLANEOUS EXERCISES

1. Find lim ^(; - } H^ + ^>
as 2: = ± 00 ; ±1; ±2;0.

2(x- + 3x + 2)

2. If n = 00 , show whether the theorems of limits apply to

:

--\ h ••• (to n terms) = a ;

1 1

a'^x a'^y, ••• (to n factors) = a;

i- 1 1

a"' X a^^ X ••• (to n factors) = a»;

1 1 i. .!L n+i
an^ X a"^ X an^ x ••• x a«* = a 2n

*

3. Draw graphs of a^, log x, log (x-^ — x), tan a:. Show discontinuities.

1 1
4. What kinds of discontinuity have a', sin - at a: = ?

5. What locus has its area proportional to the square of the abscissa?

6. Show that the perimeter of an inscribed regular n-gon equals

r . TT
sm —

2 nr sin - = 2 Trr
n TT

L n J

= 2 TIT, as n = CO.

7. Prove that the derivative of a constant is zero.



CHAPTER ir

DIFFERENTIATION OF THE ELEMENTARY FORMS

23. In recent articles, the meaning of the symbol -^
dx

was explained and illustrated ; and a method of expressing

its value, as a function of x^ was exemplified, in cases in

which y was a simple algebraic function of x^ by direct use

of the definition. This method is not always the most

convenient one in the differentiation of more complicated

functions.

The present chapter will be devoted to the establishment

of some general rules of differentiation which will, in many

cases, save the trouble of going back to the definition.

The next five articles treat of the differentiation of alge-

braic functions and of algebraic combinations of other

differentiable functions.

24. Differentiation of the product of a constant and a vari-

able.

Let y = cx\

then y -\- Ly = c (x -\- Arc),

A?/ = c(x -{- Aa:) — ex = (?Aa;,

dy _
Mm

60

therefore ^ = <?• C^^^- ^' ^^''' ^-

(XiX
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Cor. 1. li 1/ = cu, where w is a function of x, then, by

Art. 21,

dx dx

The derivative of the product of a constant and a variable is

equal to the constant multiplied hy the derivative of the variable.

Cor. 2. The operator -— and the constant multiplier c are
dx

commutative operators.

Is this true of the operators A and c ?

25. Differentiation of a sum.

Let y =f(x) + <^ (a;) + Vr (rr),

then y + ^y =f{^ 4- Ax) -\-<f)(^x + Ax') + ^/r (re + Ax),

Ay ^ f(x-\-Ax)-f(x) <t)(x-^Ax)-<l>(x)

Ax Ax Ax

ylr(x + Ax)-'\lr(x)
+ Ai

'

therefore, by equating the limits of both members,

^ = f(x) + (t>'(x) + A/r'(a:). [Art. 9, Th. 7.

dx

Cor. 1. li y = u -\- V + w, in which u, v, w, are functions

of x^ then

-A^Cu + v + w)=^ +^ + f^. (2)
dx dx dx dx

The derivative of the sum of a finite number of functions is

equal to the sum of their derivatives.

Cor. 2. The operator— is distributive as to addition.
dx

Is this true of the operator A ?

DIFF. CALC. —

5
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If the number of functions be infinite, theorem 7 of Art. 9 may not

apply, that is, the limit of the sum may not be equal to the sum of the

limits ; and hence the derivative of the sum may not be equal to the sum

of the derivatives. Thus the derivative of an infinite series cannot

always be found by differentiating it term by term. (See note, p. 14,

and footnote to Art. 56.)

26. Differentiation of a product.

Let y=f(x)(i>(x),

then ^ = /(^ + ^ ^) <^ (^ + ^^) - /(^) <^ (^)

By subtracting and adding f(x) (\>(x-\- Ax) in the numer-

ator, this result may be re-arranged thus

:

Ax ^ Ax */ V y ^^

Equating limits, as Ax = 0, using Art. 9, theorems 7, 8,

and noting that the first factor (ft Qx -{- Ax) = cj) (^x} since

<l>(x) is by hypothesis continuous (Art. 14), it follows that

Cor. 1. By writing u = (j> (a;), v =f(x), this result cftn

be more concisely written,

dx duo dx

The derivative of the product of two functions is equal to the

sum of the products of the first factor hy the derivative of the

second^ and the second factor hy the derivative of the first.

This rule for differentiating a product of two functions

may be stated thus : Differentiate the product, regarding the

first factor as constant, then regarding the second factor as

constant, and add the two results.
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Since -— (uv) =^ u—-v, the operator —- is not commutative
ax ax ax

with a variable multiplier.

Cor. 2. To find the derivative of the product of three

functions

^ = (/>(2:)^(a;)^(2;).

Let f(x~)=e{x}ylr(ix%

then y = <^ W/(^)»

hence . ^=/(^) <A'(r^^) + (^ W/'(a;),

but
*

f(x-) = (2;) f'Cx-) + f (a;) (9'(rr)

;

hence, substituting the values for f(x)^f'{x)^

^ = ^(a:) ^(x) &(x) \-d(x^(j> (x) f'Cx) + eCx} yjr (x} 4>'(x) ;

ax

and so on, for any finite number of factors.

This result can also be written in the form

d(2^ = ^,^;^^ + t;u;^ + ^^u'^. (4)dx doc dx dx

The derivative of the product of any finite number of factors

is equal to the sum of the- products obtained by multiplying

the derivative of each factor by all the other factors.

Ex. Show that the operators A and -^ are not distributive as to

multiplication.
'"'

27. Differentiation of a quotient.

Let ^ = -^^'

then 'y + ^y= f(^^^%
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f(x 4- A^:")

Ai/ 6(x-hAx)
f(x)

cf>(x)

Ax Ax

^ (t> (x}f(x + Ax) -f(x) <i>(x + Ax)

Ax </) (x) (f>(x-\- Ax)

By subtracting and adding (f>(x)f(x) in the numerator,

this expression may be written

^^^^ { f(x-^Ax)-f(x) \ j,^^^
U(x-¥Ax)-<i>(x) \

Ax~ (/) {x) (f){x -\- Ax)

Hence, by equating limits,

dl ^ 6(x)f(x)-f(x)cl>'(x)^ r.^^,^ r^.^
^

dx [.<l>ix)Y

Another form of this result is

d fu\
dx\v)

^du_^^dv
dx dx

(5)

The derivative of the quotient of two functions is equal to

the denominator multiplied hy the derivative of the numerator

minus the numerator multiplied hy the derivative of the de-

nominator^ divided hy the square of the denominator.

28. Differentiation of a commensurable power of a function.

Let y^u""^ in which w is a function of xi then there are

three cases to consider.

1. w a positive integer.

2. w a negative integer.

3. w a commensurable fraction.

1. w a positive integer.

This is a particular case of (4), the factors u, v, w, -" all

being equal. Thus
dy „_i du

dx dx
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2. w a negative integer.

Let n= —m, in which tw is a positive integer ; then

"^^ S=^^-£ ^y «^ and Case (1)

dx

hence -^ = niC' ^-—
dx dx

3. n a commensurable fraction.

Let w = — , where jt?, 5' are both integers, which may be

either positive or negative ; then

p

hence ?/' = ?^^

I.e., qy" '~f-=pu'' '-—•
dx dx

Solving for the required derivative,

dy
_

dx <1

-idu

di'"

doc
-- nii^-idu

doc'
hence «M::=^^,h-i^.

(6)dx dx

The derivative of any commensurable power of a function

is equal to the exponent of the power multiplied by the power

with its exponent diminished by unity^ multiplied by the de-

rivative of the function.

* If two functions be identical, their derivatives are identical.
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These theorems will be found sufficient for the differenti-

ation of any algebraic function ; as such functions are made

up of the operations of addition, subtraction, multiplication,

division, and involution, in which the exponent is an integer

or commensurable fraction.

The following examples will serve to illustrate the theo-

rems, and will show the combined application of the general

forms (1) to (6).

ILLUSTRATIVE EXAMPLES

3a:2-2 _ . dy
V = r-; find -^•
^ X + 1 ' dx

^^_(xH-l)^(3.^-2)-(3.^-2)£(. + l)

by (5)
dx (x + 1)2

-^ (3 ^2 - 2) = — (3 a:2) - A (2)
dx ^ ^ dx^ '' dx^

''
by (2)

= 6x. by (1), (6), Ex. 7, p. 49.

dx dx
by (2)

Substituting these results in the expression for -^y

di _ (x + 1)6 3:- (3x2-2) _ 3 x2 + 6 a: + 2

di
~

{x + 1)2 ~ ~~{x + 1)2

2. M = (3 .s2 + 2) VI + 5s2; find—

•

ds

^ = (3 s2 4- 2) -^ VI + 5s2 + Vl 4- 5 s^ - - (3 s"^ + 2). by (3)
ds ds ds

•^ Vi 4- 5 s2 = ^ (1 + 5 s2)J
ds ds

= l(l + 5.2)-i^(l + 5s2) by (6)
2 as

5 s

VH- 5 s2

i.(3s2 + 2)=6s. by (6)
ds
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Substituting these values in the expression for —

>

ds

du ^ 5.vC3.s^ + 2) ^ (j,vrT57^ = '^5 53 + 16 5
.

ds Vl + 5 s^ Vl + 5 s^

VI + x2 + Vl - a;-^ n . dy
3. V = —:=^ ; find -r-

y/1 + x^-Vi-x^ dx

First, as a quotient, by (6), -f = (vT+x^- VH^O— (VrT^+ vT^^)
"^

. dx

iL (vrT^2 + Vi^r^^) = ± VFT^^ + - Vn^^. by (2)
rfx dx dx

1/1 _L^2\-i «L^ Vl + :c^ = -^ (1 + x-^y = H (1 + ^')~^T-(1 + ^')- by (6)
rfx f/x 2 dx

— (l-\- x^) =2x.
^

by (2) and (6)
dx

Similarly for the other terms. Combining the results,

dx x'^ \ v/1 — x^'

Ex. 3 may also be worked by first rationalizing denominator.

EXERCISES

Find the x-derivatives of the functions in 1-10.

1. y = cy/x. 5. y = ^ 1 -x

Va^ - x2 1 1 + Vl - x'^

)

(a + x)"* {h + x)'
7. y r= (2a^ + x^) \a^ + xi

4. 2/ = ^^ +
^,

- 8. 3/ = (x - a)(x - 6)(x - c)^.

va + vx
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X- + 1
y = J ^ - ^' 10. y

3f^ -I

11. Given, (a + a:)^ = a^ + 5 a^x + 10 a^'^ + 10 a2x3 + 5 ax* + a:«; find

(a + x)* by diiferentiation.

12. Show that the slope of the tangent to the curve y = x^ \s never

negative. Show where the slope increases or decreases.

13. Given V^x^ + aV = a%\ find ^ : (1) by differentiating as to 2;

;

dx

(2) by differentiating as to ?/; (3) by solving for y and differentiating

as to X.

14. Show that form (1), p. 51, is a special case of (3).

29. Elementary transcendental functions. Functions that

involve operations other than addition, subtraction, multi-

plication, involution (with integer exponent), and evolution

(with integer index) are transcendental functions [Art. 4],

The most elementary transcendental functions are :

Simple exponential functions, consisting of a constant

number raised to a power whose exponent is variable,

as 4^, a^;

general exponential functions, involving a variable raised

to a power whose exponent is variable, as x^^^^-^

the logarithmic* functions, as log^a:, log^w;

the incommensurable powers of a variable, as a:^, u^ ;

the trigonometric functions, as sin u^ cos u ;

the inverse trigonometric functions, as sin"^i^, tan"^a^.

Th^re are still other transcendental functions, but they

will not be considered in this book.

The next four articles treat of the logarithmic, the two

exponential functions, and the incommensurable power.

* The more general logarithmic function log^ u is not classified separately,

as it can be reduced to the quotient -2i«_?^.
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30. Differentiation of log^x and log^w.

Let y = log«a;,

then y-\-t^y^ log„ {x + t^x)

Aa; Aa;

For convenience writing h for Arc, and re-arranging,

A^_ 1 £
Aa; 2; ^

X \ xj

To evaluate the expression ( 1 + - ) when A = 0, expand it

by the binomial theorem, supposing - to be a large positive

integer m.

The expansion may be written

(l+lV^l+^.l+!!i(^.i,+ »'("'-l)C^-2) .i,+...,

V mj m 1-2 m^ 1 • 2 • 3 m^

which can be put in the form

\ ^m) --^ + ^ + 1 2 "^1 2 3 "^"**

1 2Now as m becomes very large, the terms —> —t ••• become
m m

very small, and when m = cc the series becomes
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The numerical value of the sum of this series can be

readily calculated to any desired approximation. This sum

is an important constant, which is denoted by the letter e,

and is equal to 2.7182818 ..., thus

lim /-I , 1\lim /
= 00

(^

l + i)=g = 2.7182818....*

The number e is known as the natural or Naperian hase ;

and logarithms to this base are called natural or Naperian

logarithms. Natural logarithms will be written without a

subscript, as log x ; in other bases a subscript, as in log^ x^

will generally be used to designate the base ; but the common

logarithm, logjQ x^ is often written Log x. The logarithm of

e to any base a is called the modulus of the system whose

base is a.

If the value, ^!^o(l + - )^ = ^, be substituted in the ex-

pression for -^, there results [Th. 6, p. 31 ; Ex. p. 29.
ax

More generally, by Art. 21,

^log„« = l.log„e.f. (7)

In the particular case in which a = e,

The derivative of the logarithm of a function is the product

of the derivative of the function and the modulus of the system

of logarithms, divided hy the function.

* This method of obtaining e is rather too brief to be rigorous ; it assumes

that — is a positive integer, but that is equivalent to restricting Ax to
Ax

approach zero in a particular way. It also applies the theorems of limits to

the sum and product of an infinite number of terms. The proof is completed

on p. 315.
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31. Differentiation of the simple exponential function.

Let y = a"";

then log y = u log a.

Differentiating both members of this identity as to x^

--^ = log a • -—? by form (8),
ydx dx

therefore ^ a« = log a • «« ^, (9)

The derivative of an exponential function with a constant

base is equal to the product of the function, the natural loga-

rithm of the base, and the derivative of the exponent.

32. Differentiation of the general exponential function.

Let y = u^^

in which w, v are both functions of x.

Take the logarithm of both sides, and differentiate ; then

log^ = t;logw,

lJ^ = ^logu + iifi,byforms(3),(8),
ydx dx udx

dy _ fn
. i^ I

^ ^^^"1

.

dx L dx u dxj
'

therefore £„. = „»[,o.«.£ + ^^]. (ii)

The derivative of an exponential function in which the base

is also a variable is obtaiiied by first differentiating, regarding
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the base as constant, and, again, regarding the exponent as

constant, and adding the results.

33. Differentiation of an incommensurable power.

Let y = w",

in which n is an incommensurable constant ; then

log 7/ = nlogu,

1 dg _ n du

y dx u dx

dy y du

dx u dx

d „ n-\ du

dx dx

This result is of the same form as (6), so that, in the

theorem of Art. 28, the qualifying word " commensurable "

can now be omitted.

Ex. y = (4 a:2 - 7)2+^-"^, find
d̂x

logy = (2 + Vx2 - 5) log (4 x^ - 7).

dy r4x2-7^2Wx^ „ rlog(4a:2-7) 8(2+^x^-5) 1.

dx ^
^ • L Vx^35 4a:2_7 J

The following exercises relate to the differentiation of

combinations of algebraic, logarithmic, and exponential

functions.

EXERCISES

Find the ^-derivatives of the following functions

:

1. y= log(4a:2— 7ar+ 2). ^ y=x^\ogx.

2. y=e*='+^. 5. y =: Vx - log (Vx + 1)

.

3. 2/=ei+i. 6. y=^'' ~ ^""^

e^ +
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7. y=-ii-. 11- y=^'''

1 + ^'
12. y= \oga (3 x2 - V2 + x).

8. y=.x(i_^3).
^3 ^^^^

9. y=log(\osx).
^^ ^_ (x-1)^

10. y= e-'. (X - 2)*(a; - 3)^

In 14, take the logarithm of both members before differentiating.

Articles 34-40 will treat of the differentiation of the

Trigonometric Functions within the range of continuity.

34. Differentiation of sin u.

Let ?/ = sin u,

1 A^ _ sin (u + A^') — sin u
^
Aw

Ax Au Ax

_ 2 cos ^ (2 M + Au) sin ^ Am Au
Au Ax

, , 1 A \ sin J At* Ai6

but, when Aw = 0, cos (^u + ^ Aw) = cos u, by Art. 14, and
^^^"2"^^ = 1, by Art. 13 ; hence, passing to the limit

4-8inu = cos u ^. (12)
dx doc

The derivative of the sine of a function is equal to the prod-

uct of the cosine of the function and the derivative of the

function.

35. Differentiation of cos u.

Let ^ = cosw = sinf^ — wj,

-^cosw = -sint*4^. (13)
dx dx
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The derivative of the cosine of a function is equal to minus

the 'product of the sine of the function and the derivative of the

function.

36. Differentiation of tan u.

Let y = tan u = 1

cos w

then

d . . d
cos w • —-sin w— sin w-

—

-cosi^
dy _ dx dx

dx cos"-^ u
^j \^j

2 du . • o du du

dx dx dx
(12), (13)

cos^ u cos^ u

dx doc
(U)that is,

The derivative of the tangent of a function is equal to the

product of the square of the secant of the function and the

derivative of the function.

37. Differentiation of cot u,

1
Let y = cot u =

tan w

then ^ = — ^
^
d_ . _ _ sec^ u du

^
^-x .^.^

dx tan^zt dx i'dw^u dx

4- coti* = - csc2m 4^. (15)
ddc dx

The derivative of the cotangent of a function is equal to

minus the product of the square of the cosecant of the func-

tion and the derivative of the function.
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38. Differentiation of sec u,

1
Let />r orx^ 11

cosu

en
ax cos^ u ax cos^ u ax

^ sec t* = tan w sec M 4^

.

dx doc

V = CSQU= »

sinw

dy -1 d .

3^ = -^-— . — sinw =
dx sin^ u dx

cos u du

s,i\\^udx''

^ CSC M = - C3C M cot M ^.
doc dx (17)

(1«)

The derivative of the secant of a function is equal to the

product of the secant of the function^ the tangent of the func-

tion^ and the derivative of the function.

39. Differentiation of esc u.

Let

then

The derivative of the cosecant of a function is equal to

minus the product of the cosecant of the function^ the cotan-

gent of the function^ and the derivative of the function.

40. Differentiation of vers u.

Let y = vers w = 1 — cos w,

then -^ =—7- <^^s u,
dx dx

-^versM = sint*^. (18)dx dx

The derivative of the versed-sine of a function is equal to

the product of the sine of the function and the derivative of

the function.



66 DIFFERENTIAL CALCULUS [Ch. II.

The following exercises relate to the differentiation of

combinations of algebraic, logarithmic, exponential, and

trigonometric functions.

EXERCISES

Find the a;-derivatives of the following functions

:

1

1. sin 5 x^. 5. tan a'. 9. tan x — x.

2. sin^Tx. 6. log tan (^ :c + i tt) . 10. sin (m+ 6)cos(m-&).

3. i tan^ x - tan z. 7. log cot a;. 11. a:«'»^

4. 2 sin X cos a;. 8. sin na; sin" a:. 12. sin (sin u).

DIFFERENTIATION OF THE INVERSE TRIGONOMETRIC
FUNCTIONS

41. Differentiation of sin-i u.

Let 1/ = sin~i u ;

then sin ^ = u;

and, by differentiating both members of this identity,

dy du
cos ?//• = —;

ax dx

hence ^ = -J_*f = I *f;
dx cos y dx ± Vl — sin^y ^^

z.e., -— sin '^u = ±
1 du

dx Vl — v?dx

The ambiguity of sign accords with the fact that sin~^ u

is a many-valued function of u, since, for any value of u be-

tween — 1 and 1, there is a series of angles whose sine is u ;

and, when u receives an increase, some of these angles in-

crease and some decrease ; hence, for some of them, ;

du
is positive, and for some negative. It will be seen that,

when sin~^ u lies in the first or fourth quarter, it increases
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with u, and, when in the second or third, it decreases as u in-

creases. Hence, if it be agreed that sin~i u shall mean the

angle between — ^ tt and + J tt, whose sine is w, then

4-sm-^u = -^ , :f8iii-^u = + ^ g^. (19)

Thus the ambiguity in the derivative is removed by speci-

fying that sin~^ u is to mean the numerically smallest angle

whose sine is u.

It is well to note the distinction between an ambiguous

derivative and a non-unique derivative. In the present case,

the ambiguity disappears when any particular branch of the

many-valued function is specified, and thus each branch has

a unique derivative.

The derivative of the anti-sine of a function is equal to the

derivative of the function divided hy the square root of unity

minus the square of the function.

42. Differentiation of cos-*w.

It may be proved, by the method used in Art. 41, that

c? _i ^ 1 du
—-cos ^^ = T -

—

dx VI — u^ dx

To discriminate between the two values of this derivative,

observe that, when cos"^ u lies in the first or second quarter,

it decreases as u increases, and when in the third or fourth,

it increases with u. Hence, if it be agreed that cos~^ u shall

mean the angle between and tt, whose cosine is w, then

AcQs-in= "^
, Acos-it£ =—^J— g^. (20)

du Vl — u^ ^^ Vl-«*2 due

Here the ambiguity in the derivative is removed by speci-

fying that cos~iw is to mean the smallest positive angle

whose cosine is u.

BIFF. CALC. 6
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The derivative of the anti-cosine of a function is equal to

minus the derivative of the function divided hy the square root

of unity minus the square of the function,

43. Differentiation of tan-^w.

Let y = taii~^2*;

then tan y = u^

2 dy du

dx dx

dy _ 1 du _ 1 du

dx seJ^ydx 1 + tan^ydx

therefore dx 1 + u^ dx
(21)

The absence of ambiguity accords with the fact that, on

each of its branches corresponding to the same value of m,

tan~iw is an increasing function of u. Unless otherwise

stated, tan~^ u is specified to mean the numerically smallest

angle whose tangent is u.

The derivative of the antitanrjent of a function is equal to the

derivative of the function divided hy unity plus the square of

the function.

44. Differentiation of coi-^u.

It may be proved, by the method used in Art. 43, that

^cot-iu^^::!-,^^. (22)
dx 1 + u^ dx

On each of the brandies corresponding to the same value

of w, cot~^ u is a decreasing function of u. Unless otherwise

stated, col~i u is s[)eciried to mean the numerically smallest

angle whose cotangent is u.
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The derivative of the anti-cotangent of a function is equal to

minus the derivative of the function divided by unity plus the

square of the function.

45. Differentiation of sec"* u.

Let y = sec~^ Uj

then , sec y — u^

. dy du
sec y tan y-f- — -r-i

dx dx

dy _ 1 du 1 du
dx sec y tan y dx sec y Vsec'^y-l ^

A. sec-i u = -1 ^. (23)^^ uVu^ -I doc

If it be agreed that sec-^w shall stand for the numerically smallest

angle whose secant is u,— Ihat is to say, if when u is positive sec"^ m

shall be taken between and Jtt, and when u is negative sec~^u shall be

taken between — ^Trand — tt,— then it will be seen on comparing the

directions o£ algebraic increase X>i u and sec-^w that the positive sign

should be given to the radical in (23).

The derivative of the anti-secant of a function is equal to the

derivative of the function divided by the product of the function

and the square root of the square of the function less unity.

46. Differentiation of csc~* u.

It may be proved, by the method of Art. 45, that

A. csc-i u = -^
^-. (24)^^ u^u^ _ 1 ^«

Ex. Show that the algebi-aic sign is correct if it be agreed that

csc-^w shall mean the numerically smallest angle whose cosecant is u.

The derivative of the anti-cosecant of a function is equal to

minus the derivative of the function divided by the product of

the function and the square root of the square of the function

less unity.
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47. Differentiation of vers"^ u.

Let y = vers~^w;

then vers ^ = w,

dy _ du

dx dx

dy _ 1 du 1 du

dx sin 3/ dx Vl —(1 — vers y)^ ^^

-^ vers-i u = ^ 4^. (25)dx V2u- u^ ^^

Ex. Show that the sign of the radical is to be taken positive if

vers-^ u be specified to mean the smallest positive angle whose versed-

sine is u.

Tlie derivative of the anti-versed -sine of a function is equal

to the derivative of the function divided by the square root of

twice the function minus the square of the function.

EXERCISES

Differentiate the following expressions

:

1. xsin-^x. 7. log(cos-ix). 13. sin log ar.

2. tan X tan-* x. 8. sin-* 2 x^. 14, Iqo- sin x.

3. sin-i^-:tl. 9. vers-i-. 15. Vsmi^.
V2 «

2x 10. cot^i(a:2 - 5). cos?

4. tan-^-^. ^
^

"^ 16. e '.

1+-^
11. sec-i 1 .

5. tan-ie-. Vl - x^ ->-7. e"° *.

6. cos-^(loga:). 12. csc-^SV^. 18 sin (cos x).

The results of this chapter are for convenience summarized

on pages 71, 72 ; they will suffice to differentiate any combi-

nation of algebraic, logarithmic, exponential, trigonometric,

and inverse trigonometric functions.
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d(cu) ^ ^du^ .jx

dx dx

^(^^) =t4^+t^^. (3)
dx dx dx

-^(uvw) =uv^ +uw^ + vw^' (4)dx dx dx dx

d f^ _ dx ilx , (6)

dx V

-^M~ =nM"-i^^. («)
dx

£l.,„„ =--:^^. (7)

-^log.M =!««. (8>dx " ''"-

dx

_d_ „
dx^

dx <ix

t;2

dx

logaC d?«

w dx

_ldu
udx*

= loge«a«.^

-^ dx
(10)

^U^ =U-l0geU^+VU-^p. (11)dx °^ dx dx

~^smu =cosM^^. (12)dx dx

^ cos u = - sin i« ^. (13)
dx dx

-^ tanM =sec2M^. (U)
dx dx

# cot M = - CSC2 U^

.

(16)dx dx

-|^ sec M = sec u tan ?*^ • (16)dx dx

-^CSCM =-CSCMCOtW^. (17)dx dx
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-^ vers u
dx

= sinw^-^.
dx (18)

d . . 1 fZw
(19)dx VI - w2 rf«

4- cos* u
dx

-1 ffM

VI - u'i dx
(20)

#tan-iw
dx

1 dn
1 + 1*2 ^/^* (21)

£«•»-'»
-1 f??e

1 + u'i dx (22)

d 1

:^ sec-* u 1 du^
(23)dx uVu^ -1^^

-^csc-i u
-1 rf«*

(24)dx ^Vu^-l ^^

d , 1 <?i*.
(25)dx V2«*-t.'^^^

MISCELLANEOUS EXERCISES
"

In Ex. 1-10 find ^:
dx

1. y = \og{e'-\-e-'). 5 -, _ a^
.

''-IS-
3. y = log cot a:.

6. y = e-^^ cos a:.

1. y = 2:*in"'2x
,

8. ?/ = sec-i ^ .

•

4. ^ = (x - 3) e^r + 4a:ex + a; ^. 3.
' -^ 2x^-1

9. y = sin (2 u — 7) ; u = logx^. 10. y = e'*; u = \ogx,

11. y = logs^ 4- e»; s = secf ; find -^'

12. y = — . For \Yhat values of x is ?/ an increasing function?

13. Prove that tan-^ j
' ^ ~

j always increases with x.

14. Show that the derivative of tan-' A/
~ ^^^ ^

is not a function of x.

1 + cos X

15. Find at what points of the ellipse—|- ^^ = 1, the tangent cuts off

equal intercepts on the axes.

16. Find — from the expression x^y^ — v^x^ + G x^ — 5 ?/ + 3 = 0.

dx



CHAPTER III

SUCCESSIVE DIFFERENTIATION

48. Definition of nth derivative. When a given function

y = (\>{x) is differentiated witli regard to x by the rules of

Chapter H then the result

defines a new function which may itself be differentiated by

the same rules. Thus,

dxKdxJ dx^^ ^

The left-hand member is usually abbreviated to —4, and
doP'

the right-hand member to <\>^\x)\ thus,

Differentiating again and using a similar notation,

dxKd:^) dT? ^ ^ ^'

and so on for any number of differentiations. Thus the

symbol —^ expresses that y is to be differentiated with

regard to a;, and that the resulting derivative is to be differ-

entiated again ; or, in other words, that the operation —

-

dx
is to be performed upon y twice in succession. Similarly,

73
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—^ indicates the performance of the operation — three
do^

^ ^
^ dx

times upon y, and so on. Thus the symbol —^
is equiva-

f d\'
^^"

lent to (— \ y. It is called the nth derivative of y with

regard to x,

Ex. K y = a:* + sin 2 a:,

^=4x8 + 2cos2a:,
dx

^=12z2-4sin2ar,

^=24x-8cos2a:,

^ = 24 + 16siii2a:.
rfar*

49. Expression for the nth derivative in certain cases. For

certain functions, a general expression for the nth derivative

can be readily obtained in terms of n.

Ex 1 If v-e- ^-ex- ^-e- ..M-^'

where 7i is any positive integer, li y = e"*, y-^ = a**e*'.

Ex. 2. If y — sin x,

-^ = cosx = sin f a: + - ),
dx \ 2r

g=cos(. + |)
= sin(x + ^),

dx''

If v = sinaa:, —^=a'^sm [ax + n—],^
dx» \ 2/



48-50.] SUCCESSIVE DIFFERENTIATION 75

50. Leibnitz's * theorem concerning the nth derivative of a

product.

Let 1/ = uv, where w, v are functions of x ; then

dy dv
,

du
,

^ du dv
-f- = u—- + V—- = uv. + u.v, where --, —

-

dx ax dx dx dx

are replaced by Wj, v^ for convenience

;

again, --^=uv^-\-^ u^v^ + u^v.

These subscripts and coefficients thus far follow the same

law as the exponents and coefficients of tlie binomial series.

To test whether this law is true universally, assume its truth

for some particular value of w,

d^y
, ,

nl

dx"" (n — r)l rl

• (n - r - 1) ! (r + 1) !
""^

""^"^

and compare the result of differentiating once more with the

result of changing n into w + 1 in (1) ; if these two results

are the same, it proves that if the law be true for any one

value of w, it will also be true for the next higher, and so

on, universally.

* Gottfried Wilhelm Leibnitz (1646-1716), the founder of the nomencla-

ture and one of the chief founders of the philosophy of the differential calcu-

lus. By a remarkable coincidence Sir Isaac Newton (1642 O.S.-1727) simul-

taneously developed the same science, but his methods and notation are

somewhat different. For the history of this remarkable discovery, see

Cantor : Geschichte der Mathematik, Vol. 3, p. 150 ff.
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By differentiating (1),

^^ = uvn+i + uio^ + nuio^ + .-.

(w — r) i r

.

(n — r — 1)\ (r + 1) !

r yi! wj ^1+ 2^,^it;„_,|^^^ _ ^) I ^I
-^

(^ _ ^ ^ 1) I (^^ + 1) ij
+ ...,

^^ + 1^^ w«-. + -; (2)
Qii - r) ! (r + 1) !

and by changing n into ?i + 1 in (1), the result is seen to be

the same as (2).

Now the expression for -—^ shows that the law is true

for n = 2 ; hence it is universally true, and thus formula (1)

is established.

It is of special value when the general expression for

Un and for v^ can be readily obtained.

Ex. Given

Let u = x^ u = c",

then
ax

"2 = 2, yg = rt^e",

.

Mg = 0, Vg = a^c",

«« = 0, (n>2), ij^^a^e*".

Substituting these values in (1),

— Cx^e"**) = arV'C" + 2 na''-ia:e°'= + n (n - 1) a''-2e«*.
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51. Successive ic-derivatives of y when neither variable is

independent. Hitherto the differentiations have always been

performed with regard to the independent variable. It is,

however, sometimes necessary to differentiate a function

with regard to a variable which itself depends on some other

variable. Let y and x be each directly given as functions

of an independent variable ^, and suppose it is required to

dii
express -^ in terms of t.

From Arts. 21, 22,

I /7w /7a rlt

(1)

but -^, -J- can each be directly expressed in terms of t from

the given expressions for a:, y, hence -j- is known in terms

of ^

Thus \i y = (f>(f), and x =/(t')^ then

- dy (f>'(t^
and

-f-
= Vhi'dx f(t)

d^V
To obtain an expression similar to (1), for -t4» it may be

put in the form

dy

dy dy dt dt

dx~'.dt dx' dx

dt

d^y ^ d ^dy\ ^ d rdy\ dt ^ dt\dxj

^

^g)
dsP' dx\dxj dt\dxj dx ^ '

^(d_y\

dt

but, by differentiating (1) with regard- to «,

dx d'^y dy d^x

d_fdy\_ dt ' dt^ dt
'

dt^
.

dtKliJ" fdx\^
'

\dtj
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dx dP"y dy d?x

1- I. ^o\ ^y dt dt^ dt dt^ ,oN
hence, by (2), J = (3)

\dt)

Thus, if y = <^(0 and x -=f(t\

d?y_f'(t)^"(t:)-cl>'(t)f'(f)
d^ {fit^-f

Expressions similar to (1) and (3), but more complicated,

can be obtained for the higher derivatives.

Next let y be given directly in terms of x^ and x in terms

of t ; then — can be first expressed in terms of a;, and the
dx

result in terms of t by elimination.

Thus if y = ^{x). ^=f{t\

then £=^^(^)=c/>'[/CO],

^=</>"W=r[7(0],
dx

d^

EXERCISES

1. y = a:*-4a:8+6x2-4x+l; find ^.

2. y = (x - 3) e^ + 4 a:e* + a: ; find ^•

3. y = x6; find ^•

4. 3/ = a:31ogx; find ^.

5. y = log (e- + e-^) ; find ^.
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7. y = tan^a: + 8 log cos z + 3 z^; find ^^
dx^

8. t/ = e«sin bx', prove ^ - 2 a^ + (a2 + J^) y = 0.

9. y = a cos (log x) + 6 sin (log x)
;

prove a:^ —^ .f ^ -^ + y = 0.

10. y = tan a; + sec x ; find —^«

11. y = (a:2 + a2) tan-i -
; find ^^

^ ^
^

a dx^

d*u
12. y = e-* cos x

;
prove -^ + 4^ = 0.

dx*

dar"

13.
^x - a rfx2

14. ?/ = X"-' log X, (n a positive integer)

15. y = log^~^; find^
1 + X dx*

16 :/- ^' • find^'y-xw.
^ 1-x' "" dx*

17. y = sec2x; find ^.
</x2

18. y = 1 + xgy ; find —^ in terms of y.

19. y = tan (x + y) ; find —^ in terms of y,

20. y2 + y = a.2. find ^•

21. ex + x = e>' + y; find ^•
d/x^

22. ejr + xy-e =0; find ^^
dx'^

23. ys + x3 - 3 axy = 0; find ^.'

24. y= ^
; find^.



80 DIFFERENTIAL CALCULUS [Ch. IIL 61.

25. y = }log^+i!; find ^.

26. v = x^ -a:; find ^.

27. V = a;2e« ; find ^•

28. y = a:2 1ogx; find ^•

29. y =-^; find^.

30. y = e^ sin x ; find ^•
</x^

31. Show that the members of equation (3), p. 78, become identical

when t is replaced by x.

32. Replacing t by y, show that

(Px

d^y _ dy^

dx^~~ fdxy'
\dy)

Also derive this relation independently.

33. Verify this relation when y = sin x.

34. Find when the slope of the curve y = tan x increases with x; and

when it decreases as x increases.

35. Show that the slope of the curve y =f(x) changes from increas-

ing to decreasing when f"(x) changes its sign. Apply to the curves

y = sinx, y = sin^ x.



CHAPTER IV

EXPANSION OF FUNCTIONS

52. It is sometimes necessary to expand a given function

in a series of powers of one of its variables. For instance,

in order to compute and tabulate the successive numerical

values of sin x for different values of x^ it is convenient to

have sin x developed in a series of powers of x with coeffi-

cients independent of x.

Simple cases of such development have been seen in

algebra ; for example, by the binomial theorem,

(a + xy = a" + nar-^x + ^^^~ -^^
aJ'-'':^ + - ; (1)

J. * A

and again, by ordinary division,

1

\-x 1-f a:-|-2:2 + 2:3 4..... (2)

It is to be observed, however, that the series is a proper

representative of the function only for values of x Avithin a

certain interval ; for instance, it is shown in works on algebra

that when n is not a positive integer, the identity in (1)

holds only for values of x between — a and + «, and that

the identity in (2) holds only for values of x between — 1

and +1. In each case, if a finite value outside of the

stated limits be given to x, the sum of an infinite number of

terms of the series will be infinite, while the function itself

will be finite. In both of these examples the stated interval

81
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of equivalence of the series and its generating function is

the same as the interval of convergence of the series itself.

The general theory of the convergence and divergence of

series, so far as necessary for the present purpose, is briefly

outlined in the next two articles.

53. Convergence and divergence of series.* An infinite

series is said to be convergent or divergent according as the

sum of the first n terms of the series does or does not

approach a finite limit when n is increased without limit.

For example, the sum of the first n terms of the geometric

series

a + ax + ax^ + aa? + •••

is >.^^-^\=^.
1—x

First let x be numerically less than unity ; then when n

is taken sufficiently large, the term x^ = ; hence

«„=- , when 7i = Qo.
1 — x

Next let X be numerically greater than unity ; then when

w = Qo , a;" = Qo ; hence, in this case

«„ = cx) , when w = oo .

Thus the given series is convergent or divergent according

as X is numerically less or greater than unity. The condi-

tion of convergence may then be written

-l<a;<l,

and the interval of convergence is between — 1 and + 1.

* For an elementary, yet comprehensive and rigorous, treatment of this

subject see Professor Osgood's "Introduction to Infinite Series" (Harvard

University Press, 1897).
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Similarly the geometric series

whose common ratio is — 3 a;, is convergent or divergent

according as 3 a: is numerically less or greater than unity.

The condition of convergence is — 1 < 3 a: < 1, and the

interval of convergence is between — J and + ^.

The definition just given and illustrated is sometimes more

briefly stated as follows : An infinite series is said to be con-

vergent or divergent according as the sum of the series to

infinity is finite or infinite.

It is, however, to be carefully borne in mind that the

phrase " the sum of the series to infinity " is only an abbrevi-

ation for the more precise phrase "the limit approached by

the sum of the first n terms when n is made larger and larger

without limit."

54. General test for interval of convergence. The follow-

ing summary of algebraic principles leads up to a test that

is sufficient to find the interval of convergence of a series of

the most usual kind, that is, a series consisting of positive

integral powers of x, in which the coefficient of x^ is a

known function of n.

1. If s„ is a variable that continually increases with n,

but for all values of n remains less than some fixed number

.t, then s„ approaches some definite limit not greater than k.

[An exercise on the definition of a limit.]

2. If one series of positive terms is known to be conver-

gent, and if the terms of another series be positive and less

than the corresponding terms of the first series, then the

latter series is convergent. [Use 1.]

3. If after a given term the terms of a series form a

decreasing geometric progression, then (a) the successive

DIFF. CALC. —
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terms approach nearer and nearer to zero as a limit; and

(6) the sum of all the terms approaches some fixed constant

as a limit. [Use method of last article.]

4. If the terms of a series be positive, and if after a given

term the ratio of each term to the preceding be less than a

fixed proper fraction, the series is convergent. [Use 2 and 3.]

5. If there be a series A consisting of an infinite number

of both positive and negative terms, and if another series B,

obtained therefrom by making all the terms positive, is

known to be convergent, then the series A is convergent.

For the positive terms of A must form a convergent series,

otherwise the series B could not be convergent ; similarly

the negative terms of A must form a convergent series.

Let the sums of these convergent series be w, — v. Let the

first n terms of series A contain m positive terms and p
negative terms ; and let their three sums be respectively

Snt 2^, — Tp ; then Sn = 2,„ — Tp. Now when ti = oo, so

does 771 = Qo, and jo = oo, hence

lim o _ lim y _ lim m • .cr _,,_,,

.

therefore the series A is convergent.

Definitions. The absolute value of a real number x is its

numerical value taken positively, and is written \x\. The

equation \x.\ = \a\ indicates that the absolute value of x is

equal to the absolute value of a. When, however, x and a

are replaced by longer expressions, it is convenient to write

the relation in the form a;
|

=
|
a, in which the symbol

|

=
|
is

read "equals in absolute value." Similarly for the symbols

i<U>l-
Any series of terms is said to be absolutely or uncondition-

ally/ convergent when the series formed by their absolute

values is convergent. When a series is convergent, but the
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series formed by making each term positive is not convergent,

the first series is said to be conditionally convergent.*

E.g.^ihe series — — ^ + ^~" **• i^ absolutely convergent; but the

series
J-
—

i 4- ^ — ••• is conditionally convergent.

6. If there be any series of terms in which after some fixed

term the ratio of each term to the preceding is numerically

less than a fixed proper fraction ; then,

(a) the successive terms of the series approach nearer

and nearer to zero as a limit

;

(6) the sum of all the terms approaches some fixed con-

stant as a limit; and the series is absolutely convergent.

[Use 3, 4, 5.]

Ex. 1. Find the interval of convergence of the series

l + 2-2a; + 3.4a;2 + 4.8a:3 + .5.16x*+ •-..

Here the nth term is n2'»-ix"-^ and the (n + l)st term is (n + 1) 2''x'»,

hence
t^^^_(n + 1) 2nx>^^ (n + l)2x
M„ n2«-ia:'*-* n

therefore when n = oo, -^^ = 2 ar.

It follows by (6) that the series is absolutely convergent when
— 1< 2 X < 1, and that the interval of convergence is between — \ and

+ \. The series is evidently not convergent when x has either of the

extreme values.

Ex. 2. Find the interval of convergence of the series

X 3^ X^ X7 (- 1)"^X^"-^

1-3 3. 33 "^5. 35 7.37'^ '""^
(2n-l)3^"-i "^ *

"

* The appropriateness of this terminology is due to the fact that the terms

of an absolutely convergent series can be rearranged in any way, without

altering the limit of the sum of the series ; and that this is not true of a con-

ditionally convergent series. Thus the sum of the series + ^ — ••• ^
\i 2- 32

independent of the order or grouping ; but the sum of the series

1 — ^ + ^ — ^4- ..• can be made equal to any number whatever by suitable

re-arrangement. [For a simple proof see Osgood, pp. 43, 44.]
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«»j-iiHere :^| = ||

,2 n-l 3^ 3:2"+^ _ 2n-l
n + 1

* 32~+i " x2«-i ~ 2 n + 1

hence ^^^^ = %-, when n = oo
;

thus the series is absolutely convergent when—< 1, i.e., when — 3<x<3,

and the interval of convergence is from — 3 to +3. The extreme values

of X, in the present case, render the series conditionally convergent.

Ex.3. Show that the series ^f) " ^
(f)'

+ p(f)'-f.(f

)'

+ •

has the same interval of convergence as the last ; but that the extreme

values of x render the series absolutely convergent.

55. Interval of equivalence. Remainder after n terms.

The last article treated of the interval of convergence of a

given series without reference to the question whether or not

it was the development of any known function. On the other

hand, the series that present themselves in this chapter are

the developments of given functions, and the first question

that arises is concerning the interval of equivalence of the

function and its development.

When a series has such a generating function, the differ-

ence between the value of the function and the sum of the

first n terms of its development is called the remainder after n

terms.* Thus if /(a:) be the function, S„(x} the sum of

the first n terms of the series, and R„(x) the remainder

obtained by subtracting SJjc) from f(x)^ then

in which /8'„(a;), jR„(a:) are functions of n as well as of x.

* In some discussions of convergence of series without any reference to

a generating function, the phrase "remainder after n terms" is occasionally

used in a sense different from that given above, which is the recognized usage

in treating of the equivalence of a function and its development.
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A sufficient condition for the convergence of the series is

that Unix') approach a finite limit when w =00 ; for in that

case Sn^x), =/(a;) — i2„(a;), = a finite number, when w = oc.

Thus the interval of convergence extends over those

values of x that make ^ 1"^^ ^n(^) equal to any number not

infinite, and /(a;) itself not infinite.

On the other hand, the interval of equivalence of the

series and its generating function extends only over those

values of a; that make ^ ^^ ^n(^) = ; for it is only in that

case that . Sn(x)=f(x}^ when n =00.

Thus the interval of equivalence may possibly be nar-

rower than the interval of convergence.

It will appear later, however, that in the case of all the

ordinary functions, ^ l[^^ ^0(2^) will be zero for certain

values of x, and infinite for all other values of x ; and that

thus the intervals of convergence and of equivalence are

identical.

56. Maclaurin's expansion of a function in power-series.*

It will now be shown that all the developments of functions

in power-series which were studied in algebra and trigo-

nometry are but special cases of one general formula of

expansion.

It is proposed to find a formula for the expansion, in

ascending positive integral powers of x, of any assigned

function which, with its successive derivatives, is continuous

in the vicinity of the value x = 0.

* Named after Colin Maclaurin (1698-1746), who published it in his

"Treatise on Fluxions" (1742) ; but he distinctly says it was known by
Stirling (1690-1772), who also published it in his "Methodus Differentialis

"

(1730), and by Taylor (see Art. 65).
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The preliminary investigation will proceed on the hypoth-

esis that the assigned function f(x) lias such a development,

and that the latter can be treated as identical with the

former for all values of x within a certain interval of equiva-

lence that includes the value a; = 0. From this hypothesis

the coefficients of the different powers of x will be deter-

mined. It will then remain to test the validity of the result

by finding the conditions that must be fulfilled, in order

that the series so obtained may be a proper representation

of the generating function.

Let the assumed identity be

f(x) =A-{-Bx-\-0x'^ + D3^ + Ex^ + -, (1)

in which A^B^ (7, ••• are undetermined coefficients indepen-

dent of X.

Successive differentiation with regard to x supplies the

following additional identities, on the hypothesis that the

derivative of each series can be obtained by differentiating

it term by term, and that it has some interval of equivalence

with its corresponding function :

f(x) = B-h^Cx + SI)2^ + 4:Ua^-\- ...,

/'(rr) =2 0+S'2I)x + 4:.SJEx^+'",

fff(x) =^'2D + 4.'^'2Ex^ •..,

in which, by the hypothesis,* x may have any value within

a certain interval including the value x=0.

The hypothesis here made with regard to each series would not be

admissible in a process of demonstration. This preliminary investigation

is for the purpose of discovering what the development is, if any exists. The
validity of the development is fully tested in Arts. 60-65.

It may be of interest to refer to Professor Osgood's "Introduction to

Infinite Series," pp. 54, (51, for a proof that within its interval of converr/ence

a power-series is a continuous and differentiahle function of x, and that its
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The substitution of zero for x in each identity furnishes

the following equations :

/(0) = ^, /(0)= ^, /''(0)= 2 (7, r'(0)= 3 . 2i), ...;

hence ^ =/(0), ^=/(0), (7=-^^, D=l^,,,,

The unknown coefficients of (1) are thus expressed in

terms of known indicated operations ; and substitution in

(1) gives the form of development sought

:

(^)=/(0)+/(0>

Here the symbol /"(O) is used to indicate the operation of

differentiating /(a;) with regard to 2r, n times in succession,

and then substituting zero for x in the expression for the nth

derivative.

The resulting constant, when divided by w !, is the required

coefficient of the nth power of the variable in the assumed

development of the function.

It remains to examine what are the conditions that must

be fulfilled in order that the series so found may be a proper

representative of the function. This question can not be

fully treated until the expression for -R„(a:), the remainder

after n terms, has been obtained. This expression will be

derived after another series, which may be regarded as a

generalization of (2), has been established.

There are, however, certain preliminary conditions that

tnie derivative can be obtained, within the same interval, by differentiating

the series term by term.

This theorem is, however, not necessary to the demonstration of Mac-
lauriii's or Taylor's theorem, as the series treated in Art. 60 consists of only

a finite number of terms.
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are easily seen to be necessary in order that the series may

give the true value of the function.

First, the functions /(re), f^x)-, fC^^i "• must all satisfy

the condition of being continuous in the vicinity of x= ;

otherwise some of the coefficients/(0),/(0),/''(0), ••• would

be infinite or indeterminate, and the series would have no

definite sura for any value of x, showing that the given func-

tion f(x} could have no development in the form prescribed.

Ex. Show that the functions log a:, x^, — cannot be developed in

powers of x. e* + 1

When this condition is satisfied, it is further necessary for

the equivalence of the function and its development that the

values of x be restricted to lie within a certain interval not

wider than the interval of convergence of the series.

The method of computing the coefiicients of the successive

powers of x in the development of a given function, will be

illustrated by a few examples.

Ex. 1. Expand sin a: in powers of x, and find the interval of conver-

gence of the series.

Here f(x) = sin rr, /(O) = 0,

f(x) = cosx, /'W=l'

f'(x) = -smx, /"(0) = 0,

/-(^) = -cosa:, /"'(0) = -l,

/^(x) = sinx, /"•(0) = 0,

f^(x) = cosx, /^(0) = 1,

Hence, by (2),

sinx = + l'X + 0'x'^-—x^ + 0'X* + —x^'-,
3! 5!

thus the required development is

sin. = . - lo:* +1^ - 1.' + ... +^^.-. +
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To find the interval of convergence of the series, use the method of

Art. 54, then

M„ ' '(2n + l)!*(2n-l)! (2n + l)2n

and this ratio approaches the limit zero, when n becomes infinite, how-

ever large be the constant value assigned to x. This limit being less

than unity, the series is convergent for any finite value of x, and hence

the interval of convergence is from — oo to +qo.

Assuming, for the present, that the value x = .5, for example, lies

within the interval of equivalence of sinx and its development, the

numerical value of the sine of half a radian may be computed as follows

:

^^ 2.3 2.3.4.5 2.3.4.5.6.7 *

= .5000000

- .0208333

+ .0002604

- .0000015

+ .0000000

sin (.5) = .4794256 ...

Show that the ratio of u^ to u^ is ^; and hence that the error in stop-

ping at u^ is numerically less than u^ [^fj + (tIt)^ + •••]' < ^tt "v

Ex. 2. Show that the development of cos x is

(— l)n—lx2n—

2

2! 4! 6! (2 n - 2) !

and that the interval of convergence is from -co to +00.

Ex. 3. Develop the exponential functions a^, e^.

Here

/(x) = a^, f'(x) = a^ log a, f"(x) = a^Qog ay, .-/"(a:) = a^(log a)«,

hence /(0)= 1, /'(0)= log«, f"(0)= (loga)^, .../"(0) = (loga)«,

and a- = 1 + (log a)x + Q^K^x^ + ... + (M^^n + ....

2

!

nl

As a special case, putting a = e, the Naperian base,

then log a = log e = 1,

and e=' = l + X + — +— +". + — + ...:

21 3! n!

These series are convergent for every finite value of x.
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Ex. 4. Find the development of tan x.

Let /(x) = tan x,

then /'(ar)= sec^x,

f"(x)= 2sec2xtana;,

f"'(x) = 4 sec2 a: tan^ x + 2 sec* a:,

/^v(:r) = 8 sec2 x tan^ x + 16 sec* x tan a:,

/v(x) = 16 sec2 X tan* x + 88 sec* x tan^ x + 16 sec«ar,

/vi(x) = 32 sec2 X tan^ x + 416 sec* x tan^ x + 272 sec« x tan x,

/vii(x) =:64sec2xtan6x+ 1824sec*x tan*x+ 2880 sec«x tan-2x+ 272 sec^x, ..-.

Hence /(O) = 0, /(O) = 1, /"(O) = 0, f"'(0) = 2, /'v(o) =0,

/v(0) = 16, /vi(0) = 0,
/v"(0) = 272, ...

therefore tan x = x + ttx^ + i^x^ + =ff a;^ + ...

01 51 71

= .+ |.s+^,. + ",, + ... .

Here, as in many other cases, the law of succession of the coefficients

is very complicated, and it is not possible to express the coefficient of x»

directly in terms of n. Thus the interval of convergence of the series

cannot be obtained by simple methods.

Ex. 5. Develop c^ina: in powers of x.

Let /(x)=€8inx

then /' (x) = esin ar cos x,

/"(x) = esin^(cos2x - sin x),

f"'(x) = e8in^(cos3 X — 3 sin X COS X — cos x),

fiy(x)= esin^(cos*x — 6sinxcos2x — 4cos2x + Ssin^x + sinx),

fy(x) = esinar

(cos^x —10 sin X cos^ x— 10 cos^ x+ 15 sin^xcos x+ 15 sin x cos x + cos x),

hence

/(O) = l,/'(0) = l,/"(0) = 1, /'"(O) = 0,/rv(0) = - 3,/v(0) = - 8,

therefore c"'' « = l + x + ^- -^x* - A^e + ...

21 4! 51

There is no observable law of succession for the numerical coefficients,

and the coefficient of a;" is not expressible as a simple function of n.
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57. Development of /(a?) in powers of a? - a. It was seen in

Art. 56 that if /(a;) or any of its derivatives be discontinuous

in the vicinity of a; = 0, then /(a;) has no development in

powers of x.

It will be shown, however, that if these successive func-

tions be continuous in the vicinity of some other value a; = a,

then /(ic) will have a development in powers oi x — a, which

will be a true representative of the function for values of x

within a certain interval in the vicinity of a; = a.

First, to find the form of such development, let

/(a:) =A + B(ix-a}+ C(x-ay
+ DQc - a)3 + EQc - a)* + •.• (1)

be regarded as an identity, the coefficients A^ B, O, -" being

independent of x. With the same hypothesis for the vicinity

of a; = a as was before made for the vicinity of a: i= 0, differen-

tiation furnishes the additional identities :

f(x)=^B+ 2C(x-a^-\' 3i>(a:-a)2+ 4^(a:-a)3+-

f\x)= 2(7 +3.2i)(a;-a) + 4 .3^(a:-a)2+-

f"(x)= 3-2i> -|-4.3.2^(a;-a) +•••

If, now, the special value a be given to a;, the following

equations will be obtained :

/(a)=^, fia)=B, f"ia)= 2C, f"ia)=^.2I),...
hence,

A=f(a), B^fia-), 0-=-^, i)=/^,...

Thus the coefficients in (1) are determined, and the re-

quired development is

+ ...+-£^(a:-ay + .... (2)
nl
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Ex. 1. Expand log x in powers oi x — a.

Here /(:.) = log x,/'(x) = \f"{x) = - ],,/'" (x) =~",

hence, /(a) = log aj\a) =Kf"{a) = -^,/"'(«) =^ ' ^

and, by (2) the required development is

logx = loga+l(a:-a)-^^(:r-a)2 + A_(x-a)8-...

+ ....

The condition for the convergence of this series is that

lim r (x-ay+\(x-ay i, ,^,
n = coL(n + l)a''+i' na" J' '

'

(n + l)a'

x-a\<\a,

0<x<2a.

It will be shown presently that this is also the interval of equivalence

of log a: and its development. This series may be called the develop-

ment of logx in the vicinity of ar = a. Its development in the vicinity of

X = 1 has the simpler form

logx = x-l-l(x- 1)2 + l(x - 1)8 - ...,

which holds for values of x between and 2.

Ex. 2. Show that the development of - in powers of a: — a is

X

l = l-l(x - a) + \(x- ay -l(x- ay + ...,

X a a^ a^ a*

and that the series is convergent from x = to a: = 2 a.

Ex. 3. Develop e* in powers of x — 2.

Ex. 4. Develop x^ — 2 a:^ + 5 a: — 7 in powers of x — 1.

Ex. 5. Develop dy^ — 14:y + 7 in powers of y — 3.
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58. Remainder. The second restriction imposed upon the

series in order that it may be a correct representative of the

generating function, is that the remainder after n terms may-

be made smaller than any given number by taking n large

enough.

Before getting the general form for this remainder it is

necessary to prove the following lemma.

59. Rollers theorem. If /(:r) and its first n + 1 deriva-

tives are continuous for all values of x between a and b, and

/(«)i/(^) both vanish, then /'(a;) will vanish for some value

of X between a and b.

By supposition /(a:) cannot become infinite for any value

of X, such that a<x<b; and iif'(x') does not vanish, it

must always be positive or always be negative ; hence, /(a;)

must continually increase or continually decrease (Art. 20).

This is impossible, as/(a)= and/(ft)= 0, hence at some

point X between a and 5, /(a;) must cease to increase and

begin to decrease, or cease to decrease and begin to increase.

This point x is defined by the equation/' (a;) = 0.

To prove the same thing geometrically, let i/ =f(x) be

the equation of a continuous

curve, which crosses the a;-axis

at distances x=a^ x= b from the

origin ; then at some point be-

tween a and b the tangent to the

curve is parallel to the a;-axis,

since by supposition there is no

discontinuity in the direction of the tangent. Hence at

this point
g=/.(^)=0.

60. Form of remainder in development of f(oc) in powers

of oc — a. Let the remainder after n terms be denoted by

Y

/^ ^ ,
/a \b

t
Fig. 12.
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i2„(2:, a), which is a function of x and of a as well as of n.

From the form of the succeeding terms, -B„ may be con-

veniently written in the form

jR„ (x, a) = y^-^^) ^(x, a),

and then the problem is to determine ^(a;, a), so that the

following may be an algebraic identity :

/W=/(«)+/(«)(^-«)+-^(^-«)H -

in which the right-hand member contains only the first n

terms of the series, with the remainder after n terms. Thus

fix) -f(a) -fia)(x - a)-"^ {x - af - ...

(/i — 1) !

^ ^ n\ ^
^ ^ ^

Let a new function F {z) be defined as follows

:

F{z)^f{x)-f{z)-f{z){x - ^^--L^lCx - zf - ...

/""(-)
xx - zy-^ -i^cx - zy. (3)

in which the right-hand member is obtained from (2) by

replacing a by the variable z in every term except </)(a;, a).

This function F {z) vanishes when 2 = 2;, by inspection
;

and it also vanishes when z = a^ by (2) ; hence, by Rolle's

theorem, its derivative F'(z') vanishes for some value of z

between x and a, say Zy But

-f"(2) = -/(^) +/'(2) -/"(2)(a; - 2) +/"(2)C^ - S) - -
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and these terms cancel each other off in pairs except the last

two ; hence

then since F'(z) vanishes when z = z^, it follows that

</>(2:, a)=/"(2i), (4)

wherein z^ lies between x and a, and may thus be represented

by z^z= a-\- 6(x — a),

where ^ is a positive proper fraction. Hence from (4)

and R^(x, a) =-^ *-

\
^ (x - a)".*

The complete form of the expansion of f(x) is then

f(Sic) = f{a)-\-f\a){ic - a) +^^(aj - a)^ + ...

+rr^zlM(^ _ ar-^ +/^« +
Q^f

- ^))
(a^ - a)". (5)

(n— 1)1 wl

in which ti is any positive integer. The series may be car-

ried to any desired number of terms by increasing n, and the

last term in (5) gives the remainder (or error) after the first

n terms of the series. The symbol /"(a + 6{x — a)) indi-

cates that fipc) is to be differentiated n times with regard to

x^ and that x is then to be replaced by a + 6(x — a).

61. Another expression for the remainder. Instead of

putting Rni^x^ ^) ill the form

(x — a)" ,. ^^—^^(x, a),

This form of the remainder was found by Lagrange (1736-1813), who
published it in the M^moires de I'Acaderaie des Sciences ^ Berlin, 1772.
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it is sometimes convenient to write it in .the form

Proceeding as before, the expression for F'(z') will be

(«-l)!^'i^') = - T^-^TTi (^ - «)""' + V'C^. «)

;

and this is to vanish when z = Zj ; hence

in which z^ = a + 6(x — d)^ x — z^ = (x — a)(l — 6^ ',

thus tC^. ")=-
^"^\t -1)!

"^^
Cl-^)"-'(^ - «)'-'.

and J?„(^, a) = (l - ^jn-./'C'^ + ^(^
- «))

^^ _ ^)„.*

An example of the use of this form of remainder is fur-

nished by the series for log x in powers of x — a^ when x — a

is negative, and also in Art. 64.

Ex. 1. Find the interval of equivalence of logar and its development

in powers of x — a, when a is a positive number.

Here, from Art. 57, Ex. 1,

hence /««, + <,(x - a))| =|^(^^^.

Now the interval of equivalence is not wider than the interval of con-

vergence ; hence, by Art. 54, the first condition of equivalence is that

a: — a be numerically less than a. First let a: — a be positive, then when

* This form of the remainder was found by Cauchy (1789-1857), and first

published in his " LeQons sur le calcul infinitesimal," 1826.
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it lies between and a it is numerically less than a + 6(z — a), since 6 is

a positive proper fraction ; hence when n = co

r
/'"" J" = 0, and Rn(x, a)= 0.

La + 6{x — a)-i

Again, when a: — a is negative, and numerically less than a, the second

form of the remainder must be employed. As before,

/»(a + %-.))| =|(^(|-^„.

hence i2„(a:, a)\ = \(l - 6) «-i
(x - ay

[a + e^x - a)]n

1= 1(1 _mn-l (« - ^)"

r(a-x)-e(a-x) in-^ ^
'

' L a-e^a-x) J a-e(c ^)

The factor within the brackets is always less than 1, hence the

(n — l)st power can be made less than any given number, by taking n

large enough. This is true for all values of x between and a.

Therefore, log x and its development in powers of a: — a are equivalent

within the interval of convergence of the series, that is, for all values of

X between and 2 a.

Ex. 2. Show that the development of a: ^ in positive powers of a: — a

holds for all values of x that make the series convergent ; that is, when x

lies between and 2 a.

62. Form of remainder in Maclaurin's series. The above

form of remainder is at once applicable to Maclaurin's series

by putting a = 0. The result is

/(«!) = /(O) + /'(O)a, +Offi ^2 + ... +£^^«-i +r(M^».
2 ! (w. — 1) I n I

The remainder formula

n I

will now be used to show that the interval of equivalence of

any one of the ordinary functions, and its development in

DIFF. CALC. !
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powers of x, is co-extensive with the interval of convergence

of the development itself.

The following lemma will be useful in several cases.

63. Lemma. When x has any finite value, however great,

and n is a positive integer, then

For, let

and

—-= when n=co,
n\

of ., x''+^

u, r + 1

Now, however large be the assigned value of a;, it is possi-

ble to take r so great that

r+1

where k is some proper fraction, and then for terms subse-

quent to Uj., the ratio of each term to the preceding term

will be less than the fixed proper fraction k ; hence, by 6 («)

of Art. 54, these successive terms approach nearer and nearer

to zero as a limit.

64. Remainder in the development of a^^ sin a;, cos x.

If f(x} = a^ then /"(rr) = a^(log a)", /"(ex) = a^-^(log a)",

and EJx-) = a'X^og a)" •^ = a'^ •

^^^"^^^"
;

nl nl

but
(^^^^^y

^Q^ ^vhen w = oo, by Art. 63 ; and a^"" is finite,
n I

when X is any finite number, however great ; hence

MnQx^ = 0, when n = cc.
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Again let /(a^) = sin a;, then /"(a:) = sin [a; + ^) by Art.

49 ; hence ^ ^
^

f\dx) = sinfex +^y and i2„(a;) = sin (^Ox + f^
• ^,

but sinf ^a^-h -^) never exceeds unity for any value of x or

of w, hence, by Art. 63, 72„(3:) = 0, when n=co.

Similarly, if f(x) = cos x, f"(x) = cos
[
a; +^ ],

and

jfore, i2„(3;)= 0, when n = x)

.

^ ^befori

Hence the developments of a*, sin a;, cos a;, hold for every

finite value of x.

Ex. 1. If /(x) = sin X, compute /?3(t), when a: = | tt radians.

Ex. 2. Expand sin air by Maclaurin's theoreni, and determine the

remainder after 7 terms, counting the terms that have zero coefficients.

Ex. 3. Show that the absolute error in stopping the series for sin x,

cos X, at any term, is less than the next term of the series.

Ex. 4. Show that the relative error in stopping the series for e*, at any

term, is less than the next term of the series; the relative error being the

ratio of the absolute error to the true value of the function to be computed.

Ex. 5. Prove by expansion that

ev/:=Tx _}.
gV^x ^ 2 cos x, e^^^* - e"^^^* = 2V^n'sinx;

and, hence by addition, e^^^* = cos x + V— 1 sin x.

Ex. 6. From the last example, prove De Moivre's theorem

:

(cos X + V— 1 sin x)"* = cos mx + V— 1 sin mx.

65. Taylor's series.* It will next be shown how to write

down the .development for a function of the sum of two

*So named from its discoverer, Dr. Brook Taylor (1685-1731), who pub-

lished it in his " Methodus Incrementoruin," 1715 ; but the formula remamed
almost unnoticed until Lagrange completed it by finding an expression for

the remainder after n terras (Art. 60). Since then it has been regarded as

the most important formula in the Calculus.
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numbers in ascending powers of either number, and also an

expression for the remainder after n terms of the series.

If in the identity of Art. 60, which gives an expression

for f(jc) in powers of a; — a, the letter x be everywhere

replaced by a; + a, then x — a will be replaced by a:, and the

identity will assume the form

f(^x+a)=f{a}+f'(a)x+£^x'+
2!

+ i!:^^-:+/!(^±M^, (1)
(n— 1)! nl

in which x, a are any two numbers, n is any positive integer,

and 6 is some positive proper fraction, which may not, how-

ever, be independent of the values of the other letters.

If the second form of remainder be used, the last term on

the right will be replaced by (1 - 0y-^fj^ + ^^^ x\

In the identity (1) the letters x and a may be interchanged,

hence the expansion for /(a; + a) in powers of a is

f(x + a) =/(a;) +fCx')a -^^^a^ 4- -

^fllC^a^-^+r^^a^, (2)
(n—l)l nl

and the second form of remainder is

Ex. 1. Expand (a 4- a;)"* in ascending powers of a;, and find

the interval of equivalence.

Here / (a + a:) = (a + a;)"*,

hence /(a?) = af*,
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and f'(x) = mx'^-\ /''(a;) = w(m-l>"»-2,...,

/«(2;) = m(m— 1) ••• (m— n-\-l')x"'-^,

fQa)^a^, fCa) = ma"^-\ /''(a)=m(m-l)a—2,...,

/"(a) =w(w — 1) ••• (m —w+ l)a'"-",

therefore (a + 2;)'" = a"* + yyia"^-^^; + ^^^" ^)
a'^-'^s^^..,

(n-1)!

in which, from the first form of remainder,

_ m(m— 1) ••• (m— yi-f 1)

It will first be shown that the factor

^''''H^}

—^^ ^
^^ -^—^ ijfcQo when n =00 ;

nl

for, if it be denoted by w„, then

w„ rt+ 1

and this ratio can, by taking n large enough, be made as near

unity as may be desired; but it can never exceed unity, hence

the successive values of u„ will approach the limit zero or a

finite number, when n = cc (Art. 54, 6 (a)).

Next, the expression

( ) =0 when 71=00,

if X be positive and less than a. Hence

Il„(^a, ir) = 0, when 71=00,

if X be positive and less than a.
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Since the interval of convergence is, by Art. 54, from

x= —a to x=a^ it remains to examine the value of i2„(a, x)

when X is negative and numerically less than a. For this

purpose it is necessary to use the second form of remainder,

i2„Ca, a;) = (1 - ^)»-iK^-l) "' 0^-^+ ^) (^ + exY^x^
(71-1)!

_ m(m— X) " (m—n+ 1) (a + Ox')

(71-1)! • a- V^^^^J \a/

a; .

But when - is negative and less than 1, the expression
a

n
is a proper fraction, hence its (7i— l)st power ap-

l + (9-
a

proaches zero as a limit ; and it can be shown as before that

the factorial expression is not infinite. Hence

i2„(a, a;)=0, when w=qo,

if X lies between — a and + a.

This is therefore the required interval of equivalence.

Ex. 2. Expand log (a; + a) in powers of x, and find the

interval of equivalence.

Here /(a; + a) = log (a; + a),

/(a:)=loga;.

/«(:,)= OLZ_l)l(_l)n-i

hence
X 1 1

(« — 1) a""' » (a + te)"



65.] EXPANSION OF FUNCTIONS 105

This expansion could also be obtained from the develop-

ment of log X in powers of x — a^ in Art. 57.

Similarly,

log:(a — x')=los:a tt-^^t^ — t—s^ •••
;

X"

n{a — d^xy

When a = 1, these series become

1 /I . A x^^x^ x^^ ^(-l)«-V-i

n(l + 6x)

X^ 7? 7^ X"~^ X
log(l -.)=-:. -2 , 4 n^- ^l-g,^)"

'

in which, as in Ex. 1 of Art. 61, the remainder i2„(a:)=0,

when w = oo, if — I< a; < 1. Also, by subtraction,

which can be used for computation when x is numerically

less than unity.

This identity can be thrown into a form suitable for the

numerical calculation of the logarithm of any number

;

for, put

1 — X n 2n + h'

from which

1 f
n + h\ ^^f h 1 h^ 1 A5 \

^^V ^ J \2n + h Si2n + hy 5(i2n + hy )'

This is an identity for all positive values of 7i and A, since

the original condition 2j|<ll is replaced by |<|1,



106 DIFFERENTIAL CALCULUS [Ch. IV.

and the latter condition is always fulfilled when n and h

are positive.

Suppose it is required to find log 10. This could be

done by putting w = 1, A = 9 in the last equation, but the

series thus obtained would converge too slo\yly to be of

practical value. Let log 2 be first calculated by putting

both n and h equal to 1 ; thus

^
L3 3 33^5 35^7 37^ J

Next, put 71 = 8, A = 2,

Ioffl0 = 31og2+?r- + i ' - + - • -i + i
. -i-+ -1.

^ ^ 3L3 3 35^5 39^7 313^—

J

The numerical work can be greatly facilitated by proper

arrangement of terms. The result correct to 8 places of

decimals is log 10 = 2.30258509.

The student should bear in mind the distinction between

theoretical and practical convergence. Here, only theoreti-

cal convergence has been considered. To make a series

practically useful, i2„ should be so small that after ten or

twelve terms it could be neglected without affecting the

desired numerical approximation. Sometimes, however, the

expression for jR„ does not lend itself easily to a numerical

estimate of the error made in stopping the series at a given

term. The method of comparison with a descending geo-

metrical progression, stated in (6) of Art. 54, and illustrated

in Ex. 1 of Art. 56, and in Exs. 1, 2, 3 of Art. 67, will be

found very useful in practice.

Ex. 3. Expand sin {x + y) in ascending powers of y. Hence verify

that sin (j; -f y) = sin x cos y + cos x sin y.
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I

66. Theorem of mean value. Increment of functiwi in

terms of increment of variable. An important special case

of Taylor's theorem is

f(x + A) =/C2^) + hfCx + OK), (1)

which is obtained by putting w = 1, in equation (2) of Art.

Qib, and replacing a by h.

If f(x) be transposed, and Aa? be written for A, the identity

may be written

A/Crr) = Aa: 'f(x + 6 - ^x), (2)

which expresses that : The increment of the function is equal

to the increment of the variable multiplied by the value of

the derivative taken at some intermediate value of x.

This theorem is true whether the increments be large or

small. It has a simple geometrical interpretation. Since

f(x~) is continuous, it can be represented by a curve whose

equation is y =f(x).

In Fig. 13, let

x = ON', x^- Lx = OR,

f(x) = NH, fix + Aa:) = RK,

then ^.f(x) = MK, and

^ZW=^=tanJffl-^;

hence, f (x + d - Aa:) = tan MHK.

But /'(a: + ^'Aa:) is the slope of the tangent at some

point S between H and K\ thus the theorem of mean value

expresses that at some point between H and K the tangent

to the curve is parallel to the secant HK. This is self-

evident, geometrically ; and has already been mentioned in

Art. 59.

Fig. 13.
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Ex. 1. Verify the theorem of mean value for the function f(x) = x\

Here f(x + li) = (x + Uy = x^ + h -1 {x + Oh),

which is evidently a true identity when = ^. In most cases the exact

numerical value of the proper fraction $ is not so apparent.

When the given increment of x is small and the increment

of the function is desired, it is sometimes sufficiently accurate

in practical computation to replace f (x + 6 • Aa;) in equa-

tion (2) by its approximate value f'(x)^

then A/ (a;) = A2: •/' (2:), (3)

in which the error is, by Taylor's theorem,

KA2:)2 ./''(a; + ^ . A2:),

a term of the second order of smallness.

A second approximation to the value of Af(x) is given by

Afix} = Ax -fCx-) + i CAxy 'f"(x), (4)

in which the error is \(^Axy 'f"'{x -{• 6 - Ax^^ of the third

order.

The third approximation is obtained by adding the term

'^(Ax)^f"'(x)^ and the error will then be

^-:^(iAxy-f-(x-\-d'Ax~).

Ex. 2. Compute the first, second, and third approximations to the

increment of log x when x changes from 10 to 10.1.

Ex. 3. Show how to compute the difference for one minute in a table

of natural sines.

Increment of the increment. Let y =/(rr) be a function

which can be developed in the vicinity of x — x^\ and let x

have the three successive equidistant

^^y values x^ — 7i, x^^ x^-{- h. When x

changes from x-^ — h to a::^, let y take

the increment A-^y = f(x^ ~/(^i "" ^0

= A • /' (x^) - 1 h^f" (x^ - eK) ; and
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when X changes further from x^ to x^ -j- A, let 1/ take the

increment

let the difference of these successive increments of 1/ be

written A (Az/) or A^y

;

then A2j/= A2y-Aiy=|[/"(:ri+ e'A)+/"(:,:i-M)]. (5)

This result may be expressed in words thus : The incre-

ment of the increment of the function, corresponding to

successive equal increments of the variable, is equal to the

square of the latter increment multiplied by half the sum of

the values of the second derivative taken at intermediate

values of the variable on each side of its middle value. This

may be called the theorem of mean value for the second

derivative.

Ex. 4. Prove that A^y is an infinitesimal of the same order as (Aa:)^.

Ex. 5. Show how to compute the change in the difference for one

minute in exercise 3.

Limit of the ratio of b^y to (Aa:)^. In equation (5),

replace h by A2;, divide by (Aa;)^, and take the limit of both

members as Aa; = 0, then

lim A^ _^
Ax = ^^ ^^

67. To find the development of a function when that of its

derivative is known. Development of the anti-trigonometric

functions.

The derivative of an anti-trigonometric function being an

algebraic binomial, it is easy to expand it by the binomial

theorem ; it is now proposed to show how to use the develop-

ment of the derivative to determine the coefficients in the
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development of the given function, so as to avoid the labor

of successive differentiation.

1. Power-series for i^xT^x,

Assume, within an interval including a; = 0, the identity

tan-la; = A + Bx + Cx^ + Da^ + Ex"" + .... (1)

With the same preliminary hypothesis as in Art. bQ^

differentiation furnishes the ideiitity

1

1 +
= B-\-2Cx-\-2,I)x^ + 4.E7^-\- ..., (2)

but, within the interval from — 1 to + 1» the left member is

identical with
l—a^-\-x'^-x^-\- ...,

hence, within a certain interval including a; = 0, there exists

the identity

l_2;2+a;4_^^...,^^+2 Cx-^2>Dx^-\-4:Ej^+ '". (3)

therefore ^ = 1, (7=0, i> = -
J,

J57 = 0, F = ^, ....

The first coefficient A is found to be zero by putting

a; = in (1), hence

t2iir'^x = X —\x^ -\-\oi^ — ^x"* •\ . (4)

The interval of convergence of this series, found by the

usual method, is from a; = — ltoa;=l.
To show that this is also the interval of equivalence of the

function and the series, and thus to establish the validity of

the development, let Rn(po) denote the remainder obtained

by subtracting the sum of the first n terms from the func-

tion, then

tan-la: = x- \a^+ \a^ - ... t^^^ + Rn(x\ (5)
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hence by differentiation with regard to x,

_i_ = 1 _ 2:2 ^ ^4 _ ...
:f:
^-2 + BJ(x}, (6)

therefore RJC^) is the remainder after n terms obtained by

dividing 1 by 1 + a:^^

^,'W=±i^- (7)

By the theorem of mean value, Art. 66.,

R„ix) = 7?„(0) + xRJCex-), [0 < ^ < 1

but, from (5), i2„(0) = ; and when x is less than 1, Ox is

less than 1, hence, by (7),

MJ (^6x) = 0, when w = oo ;

therefore ^'^^^ Rr,(x) = 0.

Thus the interval of equivalence is from — 1 to +1.

Ex. 1. Compute tan-^ \, tan-^ \, tan-^ 1 ; and hence the value of ir.

tan-4 = i - Ki)^ + IG)'^ - KDH ...

= + .5

- .0416667

+ .0062500

-.0011162

+ .0002170

- .0000444

+ .0000095

- .0000023

+ .0000005

- .0000001

.4636473 + radians.

tan-H = i-ia)' + iay -••

= + .3333333

- .0123457

+ .0008230

- .0000653

+ .0000056

- .0000005

.3217506+ radians.
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To find tan-^ 1, use the formula

:

tan-il + tan-»| = tB.n-^±±A- = tan-i 1 =
|;

hence 1= .4636473 + .3217506 = .7853979 + •..,

and TT = 3.1415916 ....

In the first series, to estimate roughly the error made by stopping at

the tenth term, it may be observed that the ratio of any term to the pre-

ceding is numerically less than \, and approaches ^ as a limit ; hence, if

all the terms after n^^ were positive, their sum would be less than the

geometric series

"loG + i + i + •••),

which is less than Mj„; moreover, since the alternate terms are negative,

it follows that the error made in stopping at u^^^ is really much less than

tijQ, and is thus less than one unit in the seventh decimal place.

Similarly, in the second series, the error is much less than

"ca + i + iV + •••).

i.e., less than ^, or less than 2| units in the seventh place. Thus the

error in the value of - is less than 3| such units, and the error in the

value of TT is less than 1| units in the sixth place.

Therefore the numerical value of tt lies between 3.1415916 and

3.1415931.

2. Power-series for sin~^ x.

Proceed as before, and use the development

(1 -X^y"^ = 1 + l:z;2 + 1 .

I 2,4 + 1 . 3 .

I
. ^6 + ...^ ^1)

in which the interval of convergence is from — 1 to 1.

Let i2„(a;) be the remainder after n terms in (2), then by-

differentiation, Rn(x) is the remainder after n terms in (1),

but R^(x) = i2„(0) + xRJCex) = xRJCex), [0 < e < 1
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and, by Art. ^b^ Ex. 1,

R'n(j^x) = when w = qo, if a; |<| 1 ; hence Rn(x) = ;

and the interval of equivalence in (2) is from — 1 to 1.

Ex. 2. Compute sin-^(^), and hence obtain the numerical value of tt.

|=sin-Hi-) = i + ^Ki)' + ^f•ia)^ + ^^i•Ki)' + •••

= .5000000000

+ .0208333333

+ .0023437500

+ .0003487723

+ .0000593397

+ .0000109239

+ .0000021183

+ .0000004262

+ .0000000881

+ .0000000186

.5235987704 ; hence ir = 3.1415926224+.

Here each term may be used to obtain the next by applying as a

factor the corresponding term in the sei'ies of ratios

:

1 .1 3.3 5.5 7-7 9.9 11-11
2.3.4' 4.5.4' 6.7.4' 8.9.4' 10.11.4' 12.13.4'

"**

To determine the maximum error made by stopping at the tenth

term, it is evident that the ratio of each term to the preceding is less

than \, and approaches \ as a limit; therefore the sum of the remaining

terms is less than

that is, less than \ w,q. Hence the error in the value of ^ tt is less than 63

units in the tenth place, and the error in the above value of tt is less than

378 units in the tenth place. Thus the numerical value of tt lies between

3.1415926224 and 3.1415926602.*

Ex. 3. Show that the error made by stopping at any term in the series

for log 10, Ex. 2, Art. 65, is less than -^ of the last term used.

*Both of these formulas for tt were found by Montferier. The correct

value to ten places is 3.1415926536. By various methods mathematicians

have carried the approximation to a much larger number of places. Mr.

Shanks, of Durham, England, published the value of tt to 607 places in 1853.

No other constant has so much engaged the attention of mathematicians.

See " Famous Problems in Elementary Geometry," by Professor Klein,

translated by Professors Bemau and Smith, 1897.
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EXERCISES

Derive the following expansions

:

1. secx = l + |-; +^ + ?lx. + i{.

,.2 7.4 ^6 ^
2. logsecx = | + 5g + |g+fl.

93 7.4 95 7.6

3. cos^x = l-x2 + ^-±-f + i?.
4! 6!

A :r 1 ,

2a;3 4a:^
, o

4. e* cos a; = 1 + a; — —- + K.
o ! 41

6. log(l + sinx)=;!:-| + |-g + fi.

^4 9 tC
7. sin2a; = a:2-^ +^ + i2.

3 o-^ • o

8. vT+4^+ 12 x2 = 1 + 2 X + 4 a:2 + i?.

9. cos (x + a) =1 cos a; — a sin a: — — cos x + — sin a: + i?.

10. log sin (x + a) = log sin a; + a cot x - — csc2 a: + — -^^^ + i?.

2 3 sin^a:

9 r3
11. c^ sec a: = 1 + ar + a;^ +^ + i^.

o

12. log(l + .x)^iog2 + | + g-^+i2.
13. cot-ia; = i7r-a: + i2'3-ia;5 4-—. [a: KM
14. cot-'x=---^ + J---. [.x\>\\

X 3 x3 o a;5

15. tan-ix=5-i + -^--^+-... [a:l>|l
2 a; 3a:3 5a:5

"-
' '

-.c 1 -ill.l 1,13 1^
16. csc-i X = sin-i -=- + o-^-^ + o'7*^~l+ ••••

a: a: 23 a:^ 24oa:5
17. Expand cos~^a: in powers of a:; sec~^ x in powers of x~\



CHAPTER V

INDETERMINATE FORMS

68. Hitherto the values of a given function /(a:), corre-

sponding to assigned values of the variable a;, have been

obtained by direct substitution. The function may, how-

ever, involve the variable in such a way that for certain

values of the latter the corresponding values of the function

cannot be found by mere substitution.

For example, the function

sin a;

for the value a; = 0, assumes the form -, and the correspond-

ing value of the function is thus not directly determined.

In such a case the expression for the function is said to

assume an indeterminate form for the assigned value of the

variable.

The example just given illustrates the indeterminateness

of most frequent occurrence ; namely, that in which the

given function is the quotient of two other functions that

vanish for the same value of the variable.

Thus if /(-) =m
and if, when x takes the special value a, the functions

<f>
(x)

and -^ (x) both vanish, then

DIFF. CALC. 9 115
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is indeterminate in form, and cannot be rendered determi-

nate without further transformation.

69. Indeterminate forms may have determinate values. A
case has already been seen (Art. 16) in which an expression

that assumes the form - for a certain value of its variable

takes a definite value, dependent upon the law of variation

of the function in the vicinity of the assigned value of the

variable.

As another example, consider the function

cc^ — a^

If this relation between x and y be written in the forms

y(x — d)=x^ — a\ (x — d)Qy — x — a) = ^,

it will be seen that it can be represented graphically, as in

the figure (Fig. 14), by the pair of lines

/ a; — a = 0,

y — X — a = 0,

Hence when x has the value a there

—X is an indefinite number of corresponding

points on the locus, all situated on the

^*^- ^*- line X = a\ and thus for this value of x

the function y may have any value whatever, and is then

indeterminate.

When X has any value different from a, the corresponding

value of y is determined from the equation y = x -^ a. Now,

of the infinite number of different values of y corresponding

to X = a^ there is one particular value AP which is con-

tinuous with the series of values taken by y when x takes

successive values in the vicinity of x = a. This may be
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called the determinate or singular value of 1/ when x = a.

It is obtained by putting x = a in the equation 1/ = x \- a,

and is therefore y = 2 a.

This result may be stated without a locus as follows :

When 2; = a, the function

a? — c^

X — a

is indeterminate, and has an infinite number of different

values ; but among these values there is one determinate

value which is continuous with the series of values taken by

the function as x increases through the value a ; this deter-

minate or singular value may then be defined by

lim aP- — a^

^-« x-a'
In evaluating this limit the infinitesimal factor x — a may be

removed from numerator and denominator, since this factor

is not zero, while x is different from a ; hence the determi-

nate value of the function is

lim ^ + ^ ^2a.X = a 1

Ex. 1. Find the determinate value, when x = 1, of the function

(a;2_i)l_a: + l

which at the limit takes the indeterminate form -.

This expression may be written in tlie form

(xi - l)(x + x^ + l) + (x2 - 1)1 (xi + l)f

(x2 - l)i (xi + l)t (a; + l)i -(x^ - l)(x^ + \)

from which the infinitesimal factor x^ — 1 may be removed, giving

x + xi + 1 +(xi - l)^(.r^ + 1)1

(x^ - l)i (xi + 1)2 (x + l)t _ (a:i + 1)'

which, when a: = 1, approaches the determinate value — |.
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Ex. 2. Find the determinate value, when x =a, oi the expression

y/x — Va + Vx — a

by removing the infinitesimal factor v Vx — Va.

70. Evaluation by transformation and removal of common

factor. Sometimes a transformation must be made, before

the common vanishing factor can be discovered and removed.

For instance, to evaluate, when a: = 0, the expression

Va^ — a^

which takes the form -. On multiplying numerator and

denominator by a + Va^ — x^^ the fraction becomes

. x^

which, by the removal of the common vanishing factor a^,

reduces to

a + Va^ — a:^

and has therefore, when x is replaced by zero, the determi-

nate value -

—

2a

Ex. 1. Evaluate, when a: = 0, the function

1 -y/V~x;

VI + a: - Vl + a;2

[Multiply numerator and denominator by

(1 + vT-^)(Vl + X + Vl + a;2).]

Ex. 2. Evaluate, when a:= 1, the function

\-x
l-(V2a:-a;2)i
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71. Evaluation by development. In some cases the com-

mon vanishing factor can be best removed after expansion

in series.

Ex. 1. Consider the function mentioned in Art. 68,

e^ - g-^

sin a;

On developing numerator and denominator in powers of

a;, it becomes

.-^+-
'

3!

2. + ^^+... 2+fH-...

which has the determinate value 2, when x takes the value

zero.

Ex. 2. As another example, evaluate, when a; = 0, the

function

X — sin~^a;

— sin^ X

By development it becomes

X —{ X
2 3 7 6

"-3T+-J

Removing the common factor, and then putting x = 0, the

result is
J.

In these two examples the assigned value of x, for which

the indeterminateness occurs, is zero, and the developments
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are made in powers of x. If the assigned value of x be some

other number a, then the development should be made in

powers ol X — a.

Ex. 3. Evaluate, when x = a, the expression

^ loof X — log" a
a >

tan {x — a)

which then takes the form -•

Developing log x in powers of x — a by Art. 57 and

tan (a; — a) in powers of a; — a by Art. 56, the expression

becomes

X — a — i(x — a")2^-i _^ ...
•'—

J

X — a -\- ^{x — ay + •••

which, on removing the common vanishing factor x — a, is

1 --l(x — a>-^ + •••

and reduces to unity, when x takes the assigned value a.

In such a case it is usually convenient to write for x — a

a single letter A, and then x is replaced by a + A.

Ex. 4. Evaluate, when x = l, the function,

1 — rr+loga;

1 _ ^2x - x^'

Let X — l = h, x=l-\-h, then by developing in powers of

A, the expression becomes

h + loo^fl 4- ^)
, + (,_!+...) _!;.. + ...

x-(i-|%.^.) f.
which, on removing the common vanishing factor P, and then

putting x = l (that is, 7i = 0), reduces to the value —1.
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Ex. 5. Evaluate, when ^ = ^, the function

COS a;

1 —sin a;*

Putting a;— ~-=^, a;=--+^, the expression becomes

V2 y - sin ^ 6 6
cos

1 ' fir , A 1 — cos A /i^ A*
,'-^^^2-^'; 2-24^ 2 24

which = T oo according as A=0 from the positive or negative

side, hence
lim cos a; .,-= :F QO.

a: = i7r]^ _ sin a;

72. Evaluation by differentiation. Let the given function

be of the form \^ ( , and suppose that/(a) = 0, <^(a) = 0. It

is required to find J\"^^-^i^.
^ = «(^(a:)

As before, let /(a:), <^(a:) be developed in the vicinity of

a; = a, by expanding them in powers of a; — a, then

/(.)
/(«) +/'W(^ - «) + Z"^" +^^^"-'^^^

(:. - a)''

^
4>\a)Kx - a) +ri^^^z:^Qc I^'
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By dividing hy x — a and then letting a; == a, it follows

that

lim f(x^ ^fja)
^ = ^4>Cx) c^'(a)*

The functions f'(a), ^' (pd ^^^^^ ^^^ general both be finite.

If f'Qa) = 0, <^'(a) ^ 0, then^ = 0.

If f'(^a) ^ 0, 4>Xa) = 0, then ^^= <».

If f'^a) and </>'(«) are both zero, the limiting value of

Lx^ is to be obtained by carrying Taylor's development
(\>(x)

one term further, removing the common factor (x — a)^, and

then letting x = a. The result is L—}^-

Similarly, if /(a), /'(a), /^'(a) ; <^(a), (^'(a), (/)''(a) all

vanish, it is proved in the same manner that

lim/(^) fia-)

and so on, until a result is obtained that is not indeterminate

in form.

Hence the rule:

To evaluate an expression of the form -, differentiate nume-

rator and denominator separately ; substitute the critical value

of X in their derivatives^ and equate the quotient of the deriva-

tives to the indeterminate form.

Ex. 1. Evaluate llZ^^ when ^=0.

Put /(^)-l-cos^, <f>(e) = 0^',

then f(0) =sme, cf>'(0)=2e,

and /'(0)=0, </)'(0)=0.
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Again, /"(^) =cos 0, <^"(<^) =2,

/-(0) = 1, <^"(0)=2,

lim 1 — cos _ 1

^=0 ^2 -2hence

Ex. 2. Find
jim^ ^' + ^-'+Jco3x-4

_ lim gx_ g-z _ 2 sin a:

~ x = 4-^
*

_ lim gg-fg-*— 2co8a?
"

a: = 12 a:2

*

_ lim e'— e~' + 2sin x
~x=0 24 a:

'

lim 6=^+ e-'+ 2 cos a:

ar = 24

1

6'
- , in whichever wav a- = 0.

T?^ Q T?;..A 1^"^ a:— sina; cosa;
Ex. 3. lind ^^Q -g

Ex. 4. Find ^'.™, x^-2x«-4x2 + 9a:-4
.

In this example, show that x — 1 is a factor of both numerator and

denominator.

Ex. 5. Find
lim 3tan£-3^-xa.
X —{} yf>

In applying this process to particular problems, the work

can often be shortened by evaluating a non-vanishing factor

in either numerator or denominator before performing the

differentiation.

Ex.6. Find lim (£z:i)!tan5
x = ^

_ lim {x — 4)^ sec^ X+ 2(^3:— 4)tan x
~"a: = -^

= 16.
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The example shows that it is unnecessary to differentiate

the factor (x — 4)^ as the coefficient of its derivative

vanishes.

In general, if/(ic) = '«|r(a;);^Ca;), and if •^(a) = 0, x(a)=?^0,

(^(rt) = 0, then

lim f{x)iim /Oe)^-,^^-x±W

Otherwise thus

= yC^) . -> since i|r(a) = 0.

lim '^(3;)Y(a:) ^ lim , ^ lim -^(a?) ^ , . 2^^^)

Ex.7. Find
hm sinxcos^:^

a:=f (2a;-7r)-2

Ex.8. Find
li.ni/x-3)Mog(j2-x),
a:=l sm(x— 1)

There are other indeterminate forms than - ; they are —

,

00

00 — CO, 0^ I'', 00°. The form — is not indeterminate^

the value of the function being evidently zero.

The form oo — oo may be finite, zero, or infinite.

For instance, consider Va;^ -\. ax — x for the value a; = oo ;

it is of the form oo — oo, but by multiplying and dividing by

V?"+ai + 2: it becomes
^^

, which has the form

^ Va;^ -\-ax + X
— when a; = 00

.

00
Again, by dividing both terms by x^ it takes the form

. and this becomes ^ when 2; = 00,

Vi+-
X
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73. Evaluation of the indeterminate form ^.

Let the function -L-^— become — when a; = a : it is required

tofind 1™„^<.

This function can be written

1

4,(x) _l_

which takes the form - when x = a, and can therefore be

evaluated by the preceding rule.

When x = a.

Dividing through by •• \ it becomes

therefore ["{^l =^. (2)

This is exactly the same result as was obtained for the

form - ; hence the procedure for evaluating the indetermi-

nate forms 7T'
— ' is the same in both cases.
zo

When the true value of ' ,\ , is or 00, equation (1) is

satisfied, independently of the value of ' ,^; but (2) still
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gives the correct value ; for suppose ^ ^^f/ = ; and con-

sider the function ^ ^

/(^ _f(x) + e^(x)

<i,ix)
+ ^' -

<l>ix)
'

which has the form — when x = a^ and has the determinate
00

value c, which is not zero ; hence by (2)

lim fCx-) + ccl>(ix-) f(a) + C(^'(a) /(«)

therefore, by subtracting c,

+ <?;

I

x = a
</>(^) </>'(«)

If l^f ZM = 00, then ,^!f,^ = 0, which can be treated

as the previous case.

74. Evaluation of the form oo • 0.

Let the function be (i>(x) • "^(x)-, such that ^(a) = oo,

'f(a)=0.

This may be written ^^ ^
, which takes the form -

when a is substituted for a:, and therefore comes under the

above rule. (Art. 72.)

75. Evaluation of the form oo — oo. There is here no

general rule of procedure as in the previous cases, but by

means of transformations and proper grouping of terms it

is often possible to bring it into one of the forms -, —
00

Frequently a function which becomes oo — oo for a critical

value of X can be put in the form

u t

V w"
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in which v, w become zero ; and this equals

uw — vt

vw

which is then of the form -.

Ex. 1. Find ^^^^ (sec x - tan x).

This expression assumes the form oo — co, but can be written

1 _ sin X _ 1 — sin x

cos X COS X COS X

which is of the form -, and gives, when evaluated,

^^V" (sec2:-tana:)=0.

Ex. 2. Prove V"^ (sec^'a: — tan"x) = co, 1, according as

n>2, =2, <2.

EXERCISES

Evaluate the following expressions, both by expansion and also by

differentiation; examine both modes of approaching limits:

1. i^^^
"

when x = l.

X — 1

smx

tan (x — 1)

4 log si" 3:
2!!.

• (7r-2x)2 2

5 a:^-2:r3 + 2ar-l ^^^
a;6 _ 15^-2 _^ 24 a: -10
(Evaluate also without the use of derivatives.)

6.
^-^-'-2^

x = 0.
X — sin X

7.
^-2

x = 2.
(X - 1)" - 1
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when a: = 0.

x = 0.

x = 0,

x = L

a: = 0.

x = 0.

x = a.

x = l.

silica:

9.
X

10.
tan X — X
X — siiij;

11 1 - X + \o^x

i -V2x-x2

1? m sin a: — sin wix

X (cos a: — cos mx")

13.
a:2

1 — cos mx

^^ y/a^ - x-^+ a

Ja^ - ^' + Vax - a;2
' a

15. xt-l+ra:-l)t

(a:2 _ l)f _ a: + 1

_- ar^cot^a; + sina;
16. x = 0.

IB,
1 -VI -a:

VI + a: - VI + a;3

19 V2 - sin a: - cos a:

log sin 2 a:

20.
..,0,(1^^)

tan X — X

21.
sec a:

sec 3x

22.
a*

CSC (/;za~*)

23.
loga +a:)

x = 0.

-X
x = 0.

r = 00.
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24. c*sin-
X

when a; = CO.

25 tanar

tau5a:
-|.

26. ?'-«%an^
a' 2 a

x=^a.

27. e-\(l-\ogx) ar = 0.

28. log (x — a) tan (a; — a)

29. ^^2l£ a: =

32. ?-cot|
X 2

33.
X 1

X — 1 loga:

34. ^ cot2a;
sin^x

3*5 TT TT

, ( TT n — x)
38. Va-^-^^cotJ2^'^:;:^j

[ X + sin X — 4 sin -
j

( 3 + cos X — 4 cos -
I

30. (1 -x)tann x = l.
^ ^ 2

\^^x{^L±n 2^_
•

^^^
{f - 1)3 (e* - 1)2

a;=:0.

ar = l.

ar = 0.

a; = 0.
4 X 2 X (e'^* + 1)

36. Prove that if/(a) = 1, <^(a) = 1,

lim log/rx) ^ f'{(i)

^ = «log<^(x) <^'(«)*

37. 2*sin— a: = oo.
9*

39. J 11^ x = 0.



130 DIFFERENTIAL CALCULUS [Ch. V.

76. Evaluation of the form 1*.

Let the function u = [^cj) (x)']'f'^^^ assume the form 1* when

X = a.

To make the exponent a multiplier, take the logarithm of

both sides ; then

This expression assumes the form - when x = a, and can

be evaluated by the method of Art. 72.

If the reduced value of this fraction be denoted by m,

then log u — m and u = e^.

Note. The form 1^ is not indeterminate, but is e'qual to 1.

For, let [</> (x)'Y'^^^ assume the form 1^ when x = a.

Put u=l4>(x)'\^^'^\

then log u = ylr (x) log [<^ (a^)]?

which equals zero when x = a\

hence log u = 0, u = e^ = 1»

77. Evaluation of the forms 0^ oo^.

Let
[(f) (x)Y'^'^^ become oo^ when x = a.

Put u=l(f>(x)Y^^\

then log u—^lr (x) log </> (x) = ^^z,^V .

'f(x)

This is of the form —, and can be evaluated by the method
QO

of Art. 72. Similarly for the form O^.

Note. The form 0* is not indeterminate.

For, let u = [(^(a;)]"''^^^ become 0=^* when x = a,

then log u = i/r(a;) log (j> (x') = T oo, and u = 6^^°° = or oo.

This completes the list of ordinary indeterminate forms.
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The evaluation of all of them depends upon the same

principle, namely, that each form (or its logarithm) may be

brought to the form -, and then evaluated by differentiating

numerator and denominator separately. In finally letting

x= a^ the two directions of approach should be compared,

so as to reveal any discontinuity in the function.

EXERCISES

Evaluate the following indeterminate forms

:

1. (cos xy<^^' when x = 0.

2. (cos az)"«'/3» xz=zO.

^-
(^J

x = 0.

4. (1 -xy x = 0.

1

5. x^-' x = l.

a: = CO.

1

7. (1 -xy x =
1 1 1

1

9. (a; — ay~'' when x = a from either side

DIFF. CALC. — 10



CHAPTER VI

MODE OF VARIATION OF FUNCTIONS OF ONE VARIABLE

78. In this chapter methods of exhibiting the march or

mode of variation of functions, as the variable takes all

values in succession from — oo to +qo, will be discussed.

Simple examples have been given in Art. 19 of the use

that can be made of the derivative function (f>'(^x} for this

purpose.

The fundamental principle employed is that when x in-

creases through the value a, (p{x^ increases through the

value </>(«) if </>'(<«) is positive, and that <^(a:) decreases

through the value (/>(«) if <f)'(^a) is negative. Thus the

question of finding whether 4>(^x') increases or decreases

through an assigned value ^(a), is reduced to determining

the sign of (/>'(«).

Ex. 1. Find whether the function

increases or decreases through the values ^(3) = 2, ^(0) = 5, ^(2) = 1,

^(—1) = 10, and state at what value of x tiie function ceases to increase

and begins to decrease, or conversely.

79. Turning values of a function. It follows that the

values of x, at which </>(a:) ceases to increase and begins to

decrease are those at which (f)'(x') changes sign from positive

to negative ; and that the values of a;, at which ^(x') ceases

to decrease and begins to increase, are those at which (f>'(x^

changes its sign from negative to positive. In the former

case, 4>(x') is said to pass through a maximum, in the latter,

a minimum value.

182
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Fig. 15.

Ex. 2. Find the turning values of the function

<^ (x) =2 x3 - 3 a;2 - 12 a; + 4,

and exhibit the general march of the function by sketch-

ing the curve y = <t>(x).

Here <t>'(x) = 6 x" - 6 x - 12, = 6(z -h 1) (x - 2),

hence <^'(^) ^^ negative when x lies between —1 and +2,

and positive for all other values of x. Thus <f>(x) increases

from X = —00 to X = — 1, decreases from x = — 1 to x= 2

and increases from x = 2 to x = oo. Hence <^(— 1) is a

maximum value of <i>(x), and ^(2) a minimum.
The general form of the curve ?/ = ^(x) (Fig. 15) may-

be inferred from the last statement, and from the following simultaneous

values of x and y :

2, - 1, 0, 1, 2, 3, 4, 00,

0, 11, 4, - 9, - 16, - 5, 36, 00.

Ex. 3. Exhibit the march of the

function

«^(x) = (x- 1)1 + 2,

especially its turning values.

Since <f>'(x) =- -,

•^ (r - l)t

hence <f>'(x) changes sign at x = 1; being

negative when x< 1, infinite when x = 1,

and positive whenx > 1. Thus^(l) =2
is a minimum turning value of <^(x); and

the graph of the function is as shown in Fig. 16, with a vertical tangent

at the point (1, 2).

X = — X,

y = -co,

X
Fig. 16.

Ex.

Here

4. Examme for maxima and minima the function

<^(x)'s(x- 1)? + 1.

<^'(^)=^
(X - 1)1

hence <l>'(x) never changes sign, but is

always positive. Thus there is no turning

value. The curve y = cf)(x) has a vertical

tangent at the point (1, 1), since^- = </)'(x)

is infinite when x = 1- (Fig. 17.) Fig. 17.



134 DIFFERENTIAL CALCULUS [Ch. VI.

80. Critical values of the variable. It has been shown that

the necessary and sufficient condition for a turning value of

<j)(x) is that (f>'(x) shall change its sign. Now a function can

only change its sign either when it passes through zero, as in

Ex. 2, or when its reciprocal passes through zero, as in

Exs. 3, 4. In the latter case it is usual to say that the

function passes through infinity. It is not true, conversely,

that a function always changes its sign in passing through

zero or infinity, e.g.^ y = x^.

Nevertheless all the values of rr, at which 4>\x) passes

through zero or infinity, are called critical values of x^ be-

cause they are to be further examined to determine whether

if>'Qc) actually changes sign as x passes through these values ;

and whether, in consequence, (f>(jc) passes through a turning

value.

For instance, in Ex. 2, the derivative <f>\x) vanishes

when x = —1, and when x = 2, and it does not become in-

finite for any finite value of x. Thus the critical values are

— 1, 2 ; and it is found that both give turning values to

<f)(x'). Again, in Exs. 3, 4, the critical value Ls a; = 1, since

it makes (l>'(x') infinite, and it gives a turning value to ^(a;)

in Ex. 3, but not in Ex. 4.

81. Method of determining whether <^'(a^) changes its sign

in passing through zero or infinity.

Let a be a critical value of x, in other words let (f)'{a) be

either zero or infinite, and let A be a very small positive

number ; then a — h and a + h are two numbers very close

to a, and on opposite sides of it ; thus in order to determine

whether (t>'(^x) changes sign as x increases through the value

a, it is only necessary to compare the signs of (^'(a -f- 7i) and

(j>'Qa — h}. If it is possible to take h so small that ^'(a — ^)
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is positive and 0'(a 4- h) negative, then <^'(a;) changes sign

as X passes through the value a, and </)(a;) passes through a

maximum value <^(«). Similarly, if <^'(a — A) is negative

and <^'(a + A) positive, then ^(a;) passes through a minimum
value </>(a).

If <f>'(^a — h} and <f)(a-\-}i) have the same sign, however

small A may be, then (^(a) is not a turning value of </)(ic).

Ex. 5. Find the turning values of the function

Here <f>\x) =2{x-\){x + \y + 3 (x - l)2(x + 1)2

= {x-lXx-t\yiox-\),

hence ^'(:t:) passes through zero at x = — 1, i, and 1; and it does not

become intiiiite for any finite value of x.

Thus, the critical values are — 1, \, 1.

When X = —\ —h, the three factors of <^'(a:) take the signs — + —

,

and when x = —\ + ^, they become — + —

;

thus ^'{x) does not change sign as x increases through — 1 ; hence

<^ (— 1) = is not a turning value of ^ (x).

When X = \ — h, the three factors of </)'(^) are — + —
>

and when x = \ -^ h, they become — + +;
thus

<l>'(-^)
changes sign from + to — as a: increases through ^, and

<f>(^) = l '1 ••• is a maximum value of <f>(x).

Finally, when x= l —A, the three factors of <^'(^) ^^^® ^^^ signs —\-+,

and when x = 1 + h they become + + +

;

thus <l>'(x) changes sign from — to + as x increases through 1, and

<^(l) = Oisa minimum value of <^ (x).

The deportment of the function and its first derivative in the vicinity

of the critical values may be tabulated thus

:

1 + A

+
inc.

The general march of the function may be exhibited graphically by

tracing the curve y = <f>{x) (Fig. 18), using the foregoing result and also

the following simultaneous values of x and y :

a: = - CO, - 2, - 1, 0, ^, 1, 2, co.

.V = - 00, - 9, 0, 1, 1^, 0, 27, 00

X -1-h -1 -1+k l-h i i+^ 1-h 1

<t>'(x) + + + -

H^) inc. infl. inc. inc. max.

1-1
dec. dec. min.
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Fig. 18.

Ex. 6. Show the march of the function

<f>(x)=sm^x- cosrr.

^'(x) = 2 sin x cos^ar — sin^ar

= sin X (2 cos'^ x — sin^ ar),

hence the critical values of x are found from the equations

sinz = 0, and 2 cos^x — sin^x = 0, or tan x = ± V2.

Thus the critical values of x are .r = 0, x = tt, a; = 2 7r ••• and x = ±a,

TT ± a, 2 7r ± a, ••• where a = tan~i V2 = .95 ••• radians.

When x = — h, the factors of <f>'(x) are — , +,
X = 0, 0, +,
x = -\-h, +, -H

;

thus <f>'(x) changes from — to + as x increases through zero, and

<^(0) = is a minimum value of <^ (x).

When X = TT ~ h, the factors of <}>'(x) are +, +,
a: = TT, 0, +,
a; = TT + A, -, + ;

thus <t>'(x) changes from + to - at a: = tt, and <^ (tt) = is a maximum
value of <^ (x).

Similarly, ^'(x) changes from — to + at a: = 2 7r, and <^ (2 7r) =0 is a

minimum value of <fi (x).



81-82.] VARIATION OF FUNCTIONS 137

Again, when x = a — h, the factors of ^'(a;) are +, +,
x = a, +,0,
x = a + h, +, —

•

^Observe that when x increases to a -}- h, cos x diminishes, and sin x

increases; thus the zero factor at a: = a becomes negative at x =a + h.

Similarly, it becomes positive at a; = a — h.)

Thus (}>'(x) changes from + to — at a; = a, and <^(a:) has a maximum
value at </)(a).

When X = TT — a — h, the factors of ^'(a:) are +, —

,

X = TT — a, +> 0,

X = Tr -a + h, +, +•

(Observe that since tt — a is in the second quarter, diminishing ir — a

increases the sine and diminishes the cosine numerically, and thus

changes the zero factor to negative.)

Thus <^'('^) changes from — to + as x increases through tt — a, and

(^(tt — a) is a minimum value of <t>(x).

It may be shown in the same manner that ^(tt + a) is a minimum,

<t>(2 7r — a) a maximum, and so on.

Combining the two sets of results, the form of the curve is found to be

that of the accompanying figure (Fig. 19).

^ X

Fig. 19.

82. Second method of determining whether 4>'(a5) changes

sign in passing through zero. The following method may be

employed when the function and its derivatives are continu-

ous in the vicinity of the critical value x = a.

Suppose, when x increases through the value a, that (j)'Cx}

changes sign from positive through zero to negative. Its

change from positive to zero is a decrease, and so is the change
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from zero to negative ; thus (l>\x) is a decreasing function

at x= a, and hence its derivative, </>"(a;), is negative at

x=a.

On the other hand, if <^'(a;) changes sign from negative

through zero to positive, it is an increasing function, and

<f (a;) is positive a.t x = a; hence :

Thefunction <f>(x) has a maximum value <^(«), wJien <^'(a) =
and (f>"(a) is negative; (^(x) has a minimum value (i>(a)'>

when </>'(a)= and (\>"(a) is positive.

It may happen, however, that 4>"(a) is also zero.

In this case, to determine whether (fyQc) has a turning

value, it is necessary to proceed to the higher derivatives.

If <i>(x) is a maximum, (t>'^(x) is negative just before vanish-

ing, and negative just after, for the reason given above ; but

the change from negative to zero is an increase, and the

change from zero to negative is a decrease ; thus (i>''Qc)

changes from increasing to decreasing as x passes through a.

Hence <f)"'(x) changes sign from positive through zero to

negative, and it follows, as before, that its derivative, <^^^'(a;),

is negative.

Thus <^(a) is a maximum value of (t>(x') if (^'(a) = 0,

<^''(a)=0, (^"'(6r.)=0, 4)^^(0) negative. Similarly, </>(«) is

a minimum value of (i>(x) if (/>'(«)= 0, (^"(a)= 0, <^"'(jx)= 0,

and (i>^^'(a) positive.

If it happen that <i>^^(ci) = 0, it is necessary to proceed

to still higher derivatives to test for turning values. The

result may then be generalized thus

:

The function
<f>
(x) has a maximum (or minimum) value at

x—a if one or more of the derivatives (^'(«), <^"(a), <^"'(«)

vanish and if the first one that does not vanish is of even order

^

and negative (or positive).
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Ex. 7. Find the critical values of Ex. 5 by the second method.

^"(1) = 16, hence <^(1) is a minimum value of <ji(x),

<f>"{
— 1) =0, hence it is necessary to find <f>"'(

— 1),

(f>'"(x)=2{x+ \){ox-l) + o(x+iy+2(x+ l)(ox-l)-\-2(x-l)(6x-'[)

+ 10(a:-l)(a;+l)+5(a:+ l)2+10(x-l)(a:+ l).

^'"(— 1)=24, hence ^( — 1) is neither a maximum nor a minimum value

of 4>{x).

Again,
<l>"

(-\ = o I- — Ijl- + lj is negative, hence
<t> [^j is a

maximum value of <f>(x).

Ex. 8. Examine similarly the critical values of Ex. 6.

In this case the second derivative reduces to

<^"(a:) =cos a:(2 cos^x— 7 sin^a;),

hence <^"(0) is positive, ^"(tt) is negative; thus <^(0) is a minimum and

<^(7r) a maximum value of <f>(^x).

Again, ^"(a)=cosa(2 cos^a—7 sin^a),

bat a satisfies the equation 2cos2a— sin2a=0, hence <^"(a) is negative

and <^(a) is a maximum value of <^(x).

Also ^"(tt— a) = — cosa(2cos2a—7sinV) is positive, and ^(tt— a) a

minimum value of <^(x). Similarly for the other critical values of Ex. 6.

83. Conditions for maxima and minima derived from Tay-

lor's theorem.

In this article, as in the preceding, the function and its

derivatives are supposed to be continuous in the vicinity of

x= a ; otherwise the method of Art. 81 must be used.

Let (^(a) be a maximum value of <^(a;); then it follows

from the definition that <^(<x) is greater than either of the

neighboring values, <^(a+ A), (^(a— A), when h is taken small

enough. Hence (f)(a-\-Ti) — <f>(ci) and (^(a— li)—(f)(jci) are

both negative.

Similarly, these expressions are both positive if <^(«) is a

minimum value of </>(a;).
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Let <l)(x + 7i)^ (f>(x—}i) be expanded in powers of h by

Taylor's theorem ;

then (^(2;+ A) = </)(a:)+(/>^(a:)A+ ^ffiA2
+ ^'''^y^^^

A^

If X be replaced by a, and
<f>
(a) transposed, there results

The increment h can now be taken so small that h(j>'(^a)

will be numerically larger than the sum of the remaining

terms in the second member of either of the last two equa-

tions. Thus <l)(^a-\-h) — (j) (a) and (^Qa— K)—<j> (a) cannot

have the same sign unless 4>' (a) be zero, hence the first con-

dition for a turning value is ^'(a)=0.

In this case

and A can be taken so small that the first term on the right

is numerically larger than either of the second terms, hence

<^(a+^)— 0(a) and <f>(^a— }i)—<f>(a) are both negative when

4>^'(a) is negative, and both positive when (f)"((i) is posi-

tive.

Thus <^(a) is a maximum (or minimum) value of <f>(x)

when <l)'(a) is zero and 4>"(ji) is negative (or positive).



83-84.]* VARIATION OF FUNCTIONS 141

In case it should happen that
<f>"

(^a) is also zero, then

<^(a + A) - (^(a) = ^g^^
'
A3 + ^ ^^y—^A*,

ji^ T.^ j^/ ^ ^"'(^)j,s ,
<^'Xa- ^1^)7.4(^(a-7i)-^(ia)=- ^

,^^
' A3 + ^ ^

^^
^ ^ ^S

and by the same reasoning as before, it follows that for a

maximum (or minimum) there are the further conditions

that <f)"'Qa) equals zero, and that <i>^^(a) is negative (or

positive).

Proceeding in this way, the general conclusion stated in

the last article is evident.

Ex. 1. Which of the preceding examples can be solved by the general

rule here referred to?

Ex. 2. Why was the restriction imposed upon <j>'(x) that it should

change sign by passing through zero, rather than by passing through

infinity ?

84. Application to rational polynomials. When
(f>
(x) is a

rational polynomial, its derivative (i>'(x) is of similar form.

Let the real roots of the equation <\>'(x) = be a, 5, c, ••• Z,

arranged in descending order of algebraic magnitude ; sup-

pose, first, that no two of them are equal ; then (f>\x) has

the form

ii>'(x) = (x-a)(x-h)(x-c^"'(x-T) P, (1)

in which P is the product of the imaginary factors of the

polynomial 4^\x). This product will have the same sign

for all values of a;, and by giving the coefficient of the

highest power of x in (i>'(x) a positive value, P will always

be positive, by the theory of equations.

Differentiating (1) with regard to x, and putting x = a, it

follows that

0''(a) = (a - 5) (a - c) -. (a -QP,
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but a — 5, a — <?, ••• are all positive, hence (t>"(ci) is positive,

and therefore </>(«) is a minimum value of 4>(x)'

Again, <t>"(h) = (h-a)(h- <?) ... (h - l)F,

but b — a is negative, and the remaining factors are positive;

hence (l>"(J>) is negative, and </>(5) is a maximum value of

Also <^''(0 = (c - a) (c - 5) ... (c - OP,

in which the only negative factors are c — a, e — b; hence

4>"(j!) is positive and </>(<?) is a minimum value of (t>(x).

Similarly, the fourth root (in descending order) gives a

maximum, and so do the sixth, eighth, ..., while the first,

third, fifth, ••• correspond to minima.

Thus, if the equation <t>'(x} = has 2n real roots, all of

which are distinct, the function (j) (x) has n maxima and n

minima occurring alternately ; if <^\x) = has 2n-i-l dis-

tinct real roots, then cj) (x) has w + 1 minima and n maxima,

the latter being situated, respectively, between successive

minima.

Next, suppose that two of the roots are each equal to a ;

then <^' (x) = (x- a)^ yfr (rr),

and
<l>" (x) = (x- ay i|r' (x') -{- 2 (x - a) yjr (x'),

^'" (x-) = (x- ay ylr" (x-) +4:(x-a')ylr'(x-)-h2f (a:) ;

hence <}>' (a) = 0, (j>" (a) = 0, (!>'" (a') = 2f (a)
;

therefore </> (a) is neither a maximum nor a minimum.

If three of the roots of ^' (x) are each equal to a, it is

proved similarly that <^ (a) is a maximum or minimum ac-

cording as i/r (a) is negative or positive.

These conclusions may be extended to the cases of n equal

roots, in which n is even or odd, respectively.

An illustrative example was given in Art. 81.
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85. The maxima and minima of any continuous function

occur alternately. It has been seen that the maximum and

minimum values of a rational polynomial occur alternately

when the variable is continually increased or diminished.

This principle is also true in the case of every continuous

function of a single variable ; for, let
(f)

(a), <^ (6) be two

maximum values of (j) (a;), in which a is supposed less than

b ; then when x = a -\- h^ the function is decreasing ; when

X = b — h, the function is increasing, h being taken suffi-

ciently small, and positive. But in passing from a decreas-

ing to an increasing state, a continuous function must, at

some intermediate value of x, change from decreasing to

increasing, that is, must pass through a minimum. Hence,

between two maxima there must be at least one minimum.

It can be similarly proved that between two minima there

must be at least one maximum.

86. Simplifications that do not alter critical values. The

work of finding the critical values of the variable, in the

case of any given function, may often be simplified by means

of the following self-evident principles.

1. Any value of x that gives a turning value to c<p (x)

gives also a turning value to (j) (a;), and conversely, when e

is independent of x. These two turning values are of the

same or opposite kind according as c is positive or negative.

2. Any value of x that gives a turning value to c + <f>
(x)

gives also a turning value of the same kind to (a;), and

conversely, provided c is independent of x.

3. Any value of x that gives a turning value to [<^ (^)]"

gives also a turning value to ^ (a;), and conversely, when n

is independent of x. Whether these turning values are of

the same or opposite kind depends on the sign of w, and also

on the sign of \6 (a;)!".
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EXERCISES

Find the critical values of x in the following examples, and determine

the nature of the function at each, and obtain the graph of the function.

1. u = x^ + 18x2 ^ 105a:. 2. u = {x - ly {x - 2)2.

3. uz=x(x-\y(x-^iy.

4. u = Ax"^ -\- Bx + C \ show that u cannot have both a maximum
and a minimum value, for any values of A, B, C.

5. u = dx^—2x + 4:. Show that a cubic function has in general both

a maximum and a minimum value.

6. u = 2x -\- 4: — x^. Compare the graph of this function with that

of exercise 5.

7. u = a-. 9. n = I^Lzi^.
a-2x

8. u = i^HLE. 10. M = sin 2a; - a:.

X

11. Show that the function b + c (x — a)^ has neither a maximum
nor a minimum.

12. u = sin^a; cos^a:. 14. u = x + tan x.

13. u = sin ar + cos 2 ar. 15. « = — + e-2»

.

x

87. Geometric problems in maxima and minima. The

theory of the taming values of a function has important

applications in solving problems concerning geometric

maxima or minima, i.e.^ the determination of the largest or

the smallest value a magnitude may have while satisfying

certain stated geometric conditions.

The first step is to express the magnitude in question

algebraically. If the resulting expression contains more

than one variable, the stated conditions will furnish enough

relations between these variables, so that all the others may
be expressed in terms of one. The expression to be maxi-

mized or minimized can then be made a function of a single

variable, and can be treated by the preceding rules.
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Ex. 1. Find the largest rectangle whose perimeter is 100. Let x, y
denote the dimensions of any of the rectangles whose perimeter is 100.

The magnitude to be maximized is the area

u = xy, (1)

in which the variable^ x, y are subject to the stated condition

2a; + 2y = 100,

i.e., y = 50 - a:, (2)

hence the function to be maximized, expressed in terms of the single

variable x, is

u = <i)(x)=x (50 - a;) = 50ar - x\ (3)

The critical value of x is found from the equation

<^'(^) = 50-2a: = 0,

and is X = 25. When x increases through this value, <^'(x) changes sign

from positive to negative, and hence ^ (x) is a maximum when x = 25.

Equation (2) shows that the corresponding value of y is 25. Thus the

maximum rectangle whose perimeter is 100, is the square whose side is

25.

Ex. 2. The sum of the three dimensions of a rectangular box is 10,

the total surface is 34 ; find its dimensions so that its volume may be a

maximum.
Here the function

u = xyz (1)

is to be maximized, the three variables being subject to the two condi-

tions

a: + y + 2 = 10, (2)

xy + xz-\-yz = 17. (3)

Equation (2) multiplied by z, subtracted from (3) and transposed,

gives

xy = Vl -I0z + z\

by means of which the variables x and y can be eliminated from (1),

giving

w = (17 -10z + 22)2.

Hence the function to be maximized by varying z is
'

cf>{z) =23-10z2 + 17z,

then <^'(2) = 3^2 _ 202 + 17 = (z - 1)(32 - 17),

</,"(^)=62-20;
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hence the critical value 2= 1, which makes <i>'(z) zero and cf>"(z) negative,

gives to
<f>

(z) the maximum value 8. The other two dimensions, found

from (2) and (3), are 8 and 1. The second critical value, z = 5|, makes

<t>"{z) positive, and ^(2) an algebraic minimum. The corresponding

dimensions are 5f, — ly, 5|, a result not applicable to the special problem

in question. Thus the required dimensions are 8, 1, 1. Any change of

these dimensions subject to the given conditions will lessen the volume.

Ex. 3. If, from a square piece of tin whose side is a, a square be cut

out at each corner, find the side of the latter square in order that the

remainder may form a box of maximum capacity, with open top.

Let a: be a side of each square cut out, then the

bottom of the box will be a square whose side

is a—2xy and the depth of the box will be ar,

hence the volume is

v=x(a-2xy,

which is to be made a maximum by varying x.

Fig. 20.

Here — = (a-2a:)2-4a;(a-2ar)
dx

= (a-2x)(a-6x).

This derivative vanishes when x= ^, and when 2:= ^. It will be found

by applying the usual test, that x=^ gives v the ininimum value zero, and
a . . 2 a8

that X = -^ gives it a maximum value -^=- , hence the side of the square

to be cut out is one sixth the side of the given square.

Ex. 4. Find the area

of the greatest rectangle

that can be inscribed in

a given ellipse.

An inscribed rectangle

will evidently be sym-

metric with regard to

the principal axes of the

ellipse.

Let a, b denote the

lengths of the semi-axes

0^,0^(Fig.21);let2x,

2y he the dimensions of an inscribed rectangle; then the area is

u = ixy, (1)

Fig. 21.
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in which the variables x, y may be regarded as the coordinates of the

vertex P, on the curve, and are therefore subject to the equation of the

ellipse

It is geometrically evident that there is some position of P for which

the inscribed rectangle is a maximum ; for let P be supposed to take in

succession all positions between A and B\ then just as P moves away

from A the rectangle begins by increasing from zero, and when P comes

to B the rectangle ends by decreasing back to zero ; hence there must be

a change from increasing to decreasing, z.e., a maximum, for at least one

intermediate position.

The elimination of y from (1), by means of (2), gives the function of

a; to be maximized,

46u=— a:Va2-a;2. (3)
a

By Art. 86, the critical values of x are not altered if this function be

divided by the constant — , and then squared. Hence, the values of x
a

which render u a maximum, give also a maximum value to the function

4> (x) = a:2(a2 - x^) = a^x^ - ar*.

Here 4>'(x) ^ 2 a^x - 4:x^ = 2 x{a^ - 2x%
<f>"(x) =2a2-12a:2;

hence, by the usual tests, the critical values x =± -^ render
<f>

(a:), and

therefore the area u, a maximum. The corresponding values of y are

given by (2), and the vertex P may be at any of the four points

denoted by

V2 V2

giving in each case the same maximum inscribed rectangle, whose dimen

sions are aV2, &V2, and whose area is 2a6, or half that of the circum-

scribed rectangle.

Ex. 5. Find the cylinder of maximum volume that can be cut from

a given prolate spheroid.

Let the spheroid and inscribed cylinder be generated by the figure of

Ex. 4 revolving about OA ; then the volume of the cylinder is

v = 2irxy% (1)

DIFF. CALC. — 11
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and this is to be maximized subject to the condition

hence

62
(2)

and by Art. 86, when this function is a maximum, so is the function

X (jofi - a:2),

which, according to the usual tests, has its maximum when x = —::•

A"
^^

The corresponding value of y, from (2), is —-\ hence, from (1), the

maximum volume is

or of the volume of the prolate spheroid.

Ex. 6. Find the greatest cylinder that can be cut from a given right

cone, whose height is A, and the radius of whose base is a.

Let the cone be generated by the

revolution of the triangle OAB
(Fig. 22) ; and the inscribed cylinder

by that of the rectangle AP.
Let OA = h, AB = a, and let the

coordinates of P be (x, y); then the

function to be maximized is7ry^(h—x)

subject to the relation ^ = -.
X h

Fig. 22.

Ex. 7. Find the area of the greatest

rectangle that can be inscribed in the segment of the parabola y^ = px,

cut off by the line x = a.

Ex. 8. What is the altitude of the maximum cylinder that can be

inscribed in a given segment of a paraboloid of revolution ?

Ex. 9. Find the greatest right-angled triangle that can be constructed

on a given line as hypothenuse.

Ex. 10. (jiven the vertical angle of a triangle, and its area. Find

when its base is a minimum.

Ex. 11. A Norman window consists of a rectangle surmounted by a

semicircle. Given the perimeter; required the height and breadth of

window when the quantity of light admitted is a maximum.
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Ex. 12. The diameter of a cylindrical tree is a. Find the strongest

beam that may be cut from it, assuming that the strength is proportional

to the breadth multiplied by the square of the thickness.

Ex. 13. An open tank is to be constructed with a square base and
vertical sides. Show that the area of the entire inner surface will be

least if the depth is half the width, the volume of the tank being given.

Ex. 14. The sum of the perimeters of a circle and a square is fixed.

Show that when the sum of the areas is least, the side of the square is

double the radius of the circle.

Ex. 15. What should be the ratio between the diameter of the base

and the height of a cylindrical fruit can in order that the amount of tin

used in constructing it may be the least possible? Solve the same

problem when the top is open.

Ex. 16. The top of a pedestal which sustains a statue c feet in height

is b feet above the level of a man's eyes. Find his horizontal distance

from tlie pedestal when the statue subtends the greatest angle.

Ex. 17. A high vertical wall is to be braced by a beam which must

pass over a parallel wall a feet high, and b feet distant from the other.

Find the length of the shortest beam that can be used for the purpose.

Ex. 18. Determine the cone of minimum volume that can be de-

scribed about a given sphere.

Ex. 19. Find the shortest distance from the point (2, 1) to the

parabola y^ = ix.

Ex. 20. The lower corner of a leaf, whose width is a, is folded over

so as just to reach the inner edge of the page ; find the width of the part

folded over when the length of the crease is a minimum.

Ex. 21. A tangent is drawn to the ellipse whose semi-axes are a and

6, such that the part intercepted by the axes is a minimum ; show that

its length is a + &.

Ex. 22. A person being in a boat 3 miles from the nearest point on

the beach, wishes to reach in the shortest time a place 5 miles from that

point along the shore ; supposing he can walk 5 miles an hour, but row

only at the rate of 4 miles an hour, find the place where he must land.

Ex. 23. A slip noose in a rope is thrown

around a large square post, and the rope

drawn tiglit in the direction as shown in

the figure. At what angle does the rope

leave the post ? Yig. 28.
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Ex. 24. Show that just before and after a turning value the function

passes through equal values. Apply this principle to give geometrical

solutions to Exs. 22, 23.

Ex. 25. Show that in the vicinity of a turning value A/(a:) is an

infinitesimal of an even order when Aa; is of the first order. When is

A/(a:) of the thu'd order ?

Ex. 26. A rectangular court is to be built so as to contain a given

area, and a wall already constructed is available for one of the sides

;

find its dimensions so that the least expense may be incurred.

Ex. 27. The work of driving a steamer through the water being pro-

portional to the cube of her speed, find the most economical rate per

hour against a current running a knots per hour.

F
Ex. 28. Assuming that the current in a voltaic cell is C = ^ "^

being electromotive force, r internal resistance, R external resistance,

and that the power given out is P = RC% prove that P is a maximum
when r = R. Trace the curve that shows the variation of P, as R varies.

[Perry's Calculus for Engineers.]



CHAPTER VII

RATES AND DIFFERENTIALS

88. Rates. Time as independent variable. Suppose a par-

ticle P is moving in any path, straight or curved, and let

B be the number of space-units passed over in t seconds; then

8 may be taken as the dependent variable, and t as the in-

dependent variable.

Let As be the number of space-units described in the

additional time A^ seconds ; then the average velocity of P
during the time A^ is — •» the average number of space-units

described per second during the interval.

The velocity of P is said to be uniform if its average
As

velocitv, —^ is the same for all intervals A^. The actual
" M

velocity of P at any instant denoted by t is the limit which

the average velocity, for the interval between the time t and

the time t -f- A^, approaches as A^ is made to approach zero

as a limit.

Thus ^ = a1^"o^ = ^^' = ^ A^ dt

is the actual velocity of P at the time denoted by t. It is

evidently the number of space-units that would be passed

over in the next second if the velocity remained uniform

from the time t to the time t-\-\.

It may be observed that if, for the word " velocity," the

more general term, "rate of change," be used, the above

151
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statements will apply to any quantity that varies with the

time, whether it be length, volume, strength of current, etc.

For instance, let the quantity of an electric current be C
at time ^, and (7 + A 0^ at time ^ + A^ ; then the average rate

AC
of change of current in the interval A^ is ——? the average

increase in current units per second ; and, as before, the

actual rate of change at the instant denoted by ^ is

lim AC^dC
^^ = At dt'

This is the number of current-units that would be gained

in the next second if the rate of gain were uniform from the

time t to the time ^ + 1.

Since di^di,dx^ |-Art. 21
dx dt dt

hence -^ measures the ratio of the rates of change of ydx
and of a;.

It follows that the result of differentiating

y=/(^) (1)

may be written in either of the forms

g=/'(a.), (2)

|=/'(.)|. (3)

The latter form is often convenient, and may also be

obtained directly from (1) by differentiating both sides with

regard to t. It may be read: the rate of change of y is

f'(x) times the rate of change of x.

Returning to the illustration of a moving point P, let its

coordinates at time thQx and y ; then —- measures the rate^
dt
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of change of the a;-coordinate,

and may be called the velocity

of P resolved parallel to the

a;-axis, or the a;-component of

the velocit}'.

Similarly, -^ is the ^-compo-
at

nent of velocity.

dt

Fig. 24.

These three rates of change are connected by the equation

fdsV ^ fdx\^

\dtj \dtj
+

dtj'
(4)

Ex. 1. If a point describe the straight line 3a: + 4y = 5, and if x

increase h units per second, find the rates of increase of y and of s.

Since

hence

and when

dy _ S dx

dt~ ^dt'

dt
|A,

dx

dt

at

Ex. 2. A point describes the parabola y^ = 12 x, in such a way that

when X = S, the abscissa is increasing at the rate of 2 feet per second : at

what rate is y then increasing? Find also the rate of increase of s.

Since y^=12x,

,dy

dt

dy

dt

12
dx

dt'

6dx
V dt

dx

"Wxdt

hence, when a: = 3, and — = 2, ^ = ± 2.
dt dt

^^^- (ir= (|)^+ (I) • >>-- f = 2^^feetI.rseco„d.
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Ex. 3. A person is walking towards the foot of a tower on a horizontal

plane at the rate of 5 miles per hour ; at what rate is he approaching the

top, which is 60 feet high, when he is 80 feet from the bottom ?

Let X be the distance from foot of tower at time t, and y the distance

from the top at the same time ; then

a;2 + 602 ^ yi^

dt ^ dt

When X is 80 feet, y is 100 feet ; hence if — is 5 miles per hour, -^

is 4 miles per hour.

89. Abbreviated notation for rates. When, as in the above

examples, a time derivative is a factor of each member of an

equation, it is usually convenient to write, instead of the

symbols -r"' 7 » ^^^ abbreviations dx and dy^ for the rates

of change of the variables x and y. Thus the result of

differentiating

y=K^~) (1)

may be written in either of the forms

!=/'(.), •

(2)

dy^f{x)dx. (4)

It is to be observed that the last form is not to be re-

garded as derived from equation (2) by separation of the

symbols dy^ dx; for the derivative -^ has been defined as
dx

the result of performing upon y an indicated operation rep-

resented by the symbol — ; and thus the dy and dx of the

dy ^^
symbol -d^ have been given no separate meaning.

dx
The dy and dx of equation (4) stand for the rates or time
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derivatives -^ and -— in (3), which is itself obtained from
dt dt ^

^

(1) by differentiation with regard to f, by Art. 21.

In case the dependence of y upon x be not indicated by a

functional operation/, equations (3), (4) take the form

dy _ dy dx

dt dx dt

dy = -^ dx,
dx

In the abbreviated notation, equation (4) of the last

article is written

d»^ = dx^ + dy^.

Ex. 1. A point that is describing the parabola y^ = 2px is moving at

time t with a velocity of v feet per second ; find the rate of increase of the

coordinates x and y at the same instant.

Differentiating the given equation with regard to t,

ydy = pdx,

but dxy dy also satisfy the relation

dx'^-{-dy^=v^\

hence, by solving these simultaneous equations,

dx = ^ V, dy = ^ V, in feet per second.

Ex. 2. A vertical wheel of radius 10 ft. is making 50 revolutions per

second about a fixed axis. Find the horizontal and vertical velocities of

a point on the circumference situated 30° from the horizontal.

Since a: = 10 cos 6, y = 10 sin 0,

dx = -10 sin OdO, dy = 10 cos OdO,

but dO = 100 TT = 314.16 rad. per second,

hence dx = — 3141.6 sin 6 = — 1570.8 feet per second,

dy = 3141.6 cos = 2720.6 feet per second.

Ex. 3. Trace the changes in the horizontal and vertical velocity in a

complete revolution.
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90. Differentials often substituted for rates. The symbols

dx^ dy have been defined above as the rates of change of x

and y per second.

They may sometimes, however, be conveniently allowed to

stand for any two numbers, large or small, that are propor-

tional to these rates ; and the equations, being homogeneous

in them, will not be affected. It is usual in such cases to

speak of the numbers dx and dy by the more general name

of differentials^ and they may then be either the rates them-

selves, or any two numbers in the same ratio.

This will be especially convenient in problems in which

the time variable is not explicitly mentioned.

Ex. 1. When x increases from 45° to 45° 15', find the increase of

logjQ sin X, assuming that the ratio of the rates of change of the function

and the variable remains sensibly constant throughout the short interval.

Here dy = .4343 cot xdx = .4343 dx
;

let dx = lb' = .004363 radians

;

then dy = .001895,

which is the approximate increment of log^, sin a?,

but logio s"^ 45° = - ^ log 2 = - .150515,

logio sin 45° 15' = - .148612.

Ex. 2. Expanding logjo sin (x + h) as far as h^ by Taylor's theorem, and

then putting x = .785398, h = .004363, show what is the error made by

neglecting the third term, as was done in Ex. 1.

Ex. 3. When x varies from 60° to 60° 10', find the increase in sin x.

Ex. 4. Show that logj^ x increases more slowly than x, when x> logjo e,

that is, X > .4343.

Ex. 5. Two sides, a, b, of a triangle are measured, and also the in-

cluded angle C ; find the error in the computed length of the third side c

due to a small error in the observed angle C.

[Differentiate the equation c^ = a"^ -\- b^ — 2 ab cos C, regarding a, b as

constant.]
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Ex. 6. In a tangent galvanometer the tangent of the deflection of the

needle is proportional to the current. Show that the relative error in

the computed value of the current, due to a given error of reading, is

least when the angle of deflection is 45°.

Ex. 7. The error in the area A of an ellipse, due to small errors in the

semi-axes, is approximately given by —— = — -\ •

A a h

Ex. 8. The side of an equilateral triangle is 24 inches long and is

increasing at the rate of two inches per day ; how fast is the area of the

triangle increasing?

Ex. 9. Find the rate of change in the area of a square when the side

h is increasing at a ft. per second.

Ex. 10. In the function y = 2x^ + Q, what is the value of x at the

point where y increases 24 times as fast as a: ?

Ex. 11. A circular plate of metal expands by heat so that its diameter

increases uniformly at the rate of 2 inches per second ; at what rate is

the surface increasing when the diameter is 5 inches ?

Ex. 12. What is the value of x at the point at which x^ — b x"^ { VI x

and x^ — ^x change at the same rate

?

Ex. 13. Find the points at which the rate of change of the ordinate

y=:a,-3 — 6a;2 + 3a; + 5is equal to the rate of change of the slope of the

tangent to the curve.

Ex. 14. The relation between s, the space through which a body falls,

and t, the time of falling, is s = 16^^; show that the velocity is equal

to 32 ^

The rate of change of velocity is called acceleration; show that the

acceleration of the falling body is a constant.

Ex. 15. A body moves according to the law s = cos (nt + e) ; show
that its acceleration is negative and proportional to the space through

which it has moved.



CHAPTER VIII

DIFFERENTIATION OF FUNCTIONS OF MORE THAN ONE
VARIABLE

In tlie previous chapters the dependence of one variable

upon another, called the independent variable, has been

discussed. The mode of dependence of one variable upon

two others will next be considered; and the relation between

the dependent variable z and the independent variables x

and y will be expressed in the form

2=/(^,2/)- (1)

Examples of such dependence have been seen in coordi-

nate geometry of three dimensions ; for instance, from the

equation of a sphere referred to its center as origin

^ + y^ + 2^ = «^,

any one of the variables may be expressed as a function of

the other two ; thus

z= Va^ — a^ — y\

Conversely, any relation of the form (1) can be exhibited

graphically by taking rr, y as coordinates of a point on a

horizontal plane, and drawing at the point an ordinate to

the plane to represent the corresponding value of the func-

tion z ; the form of the surface of which (1) is the equation

will represent the mode of variation of the function.

91. Definition of continuity. A function /(a;, y) is said to

be continuous in the vicinity of the values a: = a, ^ = 6 ; when
168
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/(a, 5) is real, finite, and determinate (whether unique or

multiple-valued) ; and when the difference /(a -f A, 5 + ^)

—/(a, 6) can be made less than any assigned number r?, by

taking A, k small enough, independent of the ratio of ^ to A

;

in other words, when

A=o!"fc=0 /C''+ '^' *+^) =/(«' *).

no matter in what way h and ^ approach their limits.

It is implied that, when the function is multiple-valued,

attention is to be paid to the correspondence of the multiple

values in the two members of this limit-relation.

In geometrical language the function /(a:, y) is continuous

at a;=a, y=5, when the ordinate of the surface z= f(x, y')

drawn at the point (a+ A, h+ k) approaches as a limit the

ordinate drawn at the point (a, 5) irrespective of the direc-

tion in which the point (a -f A, 6 -f- ^) moves to coincidence

with the point (a, h). [Cf. Exs. 7, 9, p. 182.]

92. Rate of variation. Partial derivatives. The most

important question concerning the variation of a continuous

function z is : what is the rate of change of z when x and y
vary at given rates ? It is convenient to consider first the

simpler question : what is the rate of change of z when x

varies at a given rate, and y remains constant ?

In this case s is a function of the single variable a;, and its

rate of change is

dz dz dx ^H >.

di^didi'
*

^ ^

in which it is to be understood that the operation — is per-

^formed on the supposition that ^ is a constant, and that -—
- do

is the rate of change of z in so far as it depends on the

change of x. To indicate tliese facts without the qualifying
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verbal statements, equation (1) will be written in the

form

dt dx dt'
^""^

dz
in which — stands for the 2;-derivative of z when y is kept

constant, and is called the partial derivative of z Avith regard

to x^ and -f- denotes the rate of change of z in so far as it
dt

depends on the change of x.

Thus, by Art. 18, the partial derivative is the result of the

indicated operation

dz___ lim A^__ lim f(x-\-^x, y)— f{x^ y)

Similarly, the rate of change of z when x is kept constant

and y varies at a given rate is measured by

dt dy dt ^ "

in which -^ is the rate of change of z in so far as it

depends upon the change of y^ and — denotes the partial
dy

derivative of z taken with regard to y, that is, the result of

the operation indicated by

52^ lim A^^ lim / (x, y+ Ay) -/ (x, y)
dy ^y = ^Ay ^y = ^ Ay

93. Geometric illustration. Let the function f(x, y} be

represented graphically by the ordinate of a surface whose

equation is z= f(x^ y) and let a vertical section be taken

parallel to the plane {z^x) at a given distance y=yx from

that plane ; then if a point P be supposed to describe on

the surface the contour of the section, the ^/-coordinate will

remain constant, and the value of the varying ordinate z will
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be given by the equation z= f(x^y^. If the rate of varia-

tion of X at any instant be known, the corresponding rate of

variation of z is given by

d^_dz^dx_ df(x^ y^) dx

dt dx dt dx dt

which may be called the rate of variation of the ordinate

in the a;-direction.

The partial derivative — is the ratio of the rates of in-^
dx

crease of z and a;, and is represented geometrically by the

slope of the tangent drawn to the contour at P.

Ex. 1. A point P on the surface z = xhf + 2 xy^ moves in the plane

y= 2 ; the x-rate is 10 feet per second ; find the rate of change of z, when
P is passing through the point for which ar = 3, and also the direction

and velocity of the motion of P.

Differentiating the given identity with regard to t, y being kept con-

stant, ^ = (2xy + 2y^) — = 20— = 200 feet per second, and the slope

of the tangent at P in the plane of motion is 20.

The velocity of P in the curve is VlO*"^+ 20U=^= 200.25 feet per second.

Similarly, if P move on the surface in the plane x = x^,

the rate of change of z will be given by

dyZ ^dz dy ^ df(x, y) dy

dt dy dt dy dt^

and — , the ratio of the rates of change of z and y^ will
dy

measure the slope of the tangent at P in the plane of motion.

Ex. 2. Find for the same surface as before, at the point for which

a: =z 3, y = 2 the rate of change of z in the ^-direction, if y be changing

at the rate of 5 feet per second, x being kept constant.

Here ^ = (a:2 + 4 arv) ^ = 33^ = 165 feet per second, and the slope
dt dt dt

in the direction of motion is 33.

94. Simultaneous variation of a? and y \ total rate of varia-

tion of s. It will now be shown that when x and y vary
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simultaneously, the total rate of change of z is the sum of

its separate rates of change as x and y vary alone; that is,

dz _ d^ dyZ ^-jN

dt dt dt

' dz^dzdx dzd^^ ^2^
dt dx dt dy dt ^ ^

For, let z —f(x^ y)-, and let x^ y start at the values x-^^ y^,

and take increments Ax, Ay ; then the initial value of z is

fC^v ^i)' ^"^ ^^^ fi"^^ value is /(a;^ + Ax, y^ + A?/); hence

the total increment of z is

f(x^ + Ax, y^ + Az/) -/(a:i, y{).

By subtracting and adding the intermediate value

f(x^ + Ax, y{),

in which a; alone has varied from its original value, the

total increment of z may be written as the sum of two

partial increments in the form

Az = lf(x^ + Ax, y^ + A?/) -fCx^ + Ax, y^)]

the latter being the increment of f(^x, y) as x changes from*

x^ to x-^ H- Aa;, ?/ remaining constant, and the former being

the further increment of the function as x remains at the

value x^ + Ax while y changes from y-^ to y^ + Ay,

The result of dividing by At, the increment of t, may

be written

Az ^ f(x^ + Ax, yy + Ay) — /(a?! + Ax, y{) Ay
At Ay At

f{x^ + Aa:, y^-fjx^, y{) Ax^
Aa: A^'
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Taking limits as A^ Ax, Ay, A2, all approach the limit

zero, and remembering that by Arjb. 92,

Ax dx ' * ^*'

Kx,+ ^x, y.+Ay) -f(x,+ ^z, y,~) ^ J£^ ^^^^^ ^^ ^ ^ ^^^^

=—, taken at a: = a:,,

dy

it follows that, at any values of x and y, for which the func-

tion and its partial derivatives are continuous,

^_ 5^ ^ 5£ dy

dt dx dt By dt

In the abbreviated rate notation, equations (2), (3) of

Art. 92, and (1), (2) of Art. 94, are respectively,

^'^^Tx ^^' ^"^ ^Y ^^'

dz= d^ + dyZ =— dx -\ dy.
dx dy

Ex. 1. A particle moves on the spherical surface x^ + y^ \- z^ = a^ in

a vertical meridian plane inclined at an angle of 60° to the plane (zx).

If the x-component of its velocity be -^a per second, when x = \a, find

the ^-component, the 2-component, and the resultant velocity.

Since z = y/a^ — x^ — y\

, xclx ydy

y/d^ — x'^ — y^ y/cfl — x'^ — y'^

but since dx = ^a, and the equation of the given meridian plane is

y = X tan 60^ hence dy = dxV3 =— V3, and y = ^—^. Therefore
' ^

10 4

dz = --^ -^ = -9l^ = - .115a in feet per second.
2V^ 2 15

Also, ds = y/dx^ + dy'^ + dz^ = ^^ = 0.23 a in feet per second.

DIFF. CALC. — 12



164 DIFFERENTIAL CALCULUS [Ch. VIIL

95. Language of differentials. The results of the preced-

ing articles may be stated thus :

The partial 2-differential due to the change of x is equal

to the ar-differential multiplied by the partial ir-derivative.

The partial z-differential due to the change of y is equal

to the y-differential multiplied by the partial ^/-derivative.

The total ^-differential is equal to the sum of the partial

2-differentials.

One advantage in keeping the equation in the differential

form is that it may be divided when necessary by the differ-

ential of any other variable s, to which x and y are related,

and then, remembering that the ratio of two differentials

(or rates) may be expressed as a derivative, the equation

becomes

dz_dz_dx dz^ dy^

ds dx ds dy ds
,

Ex. 1. Given z = axy^ + ^x'^y + cx^ + ey,

dz = (ay^ -\- 2 bxy + 3 cx'^)dx + (2 axy + hx"^ + e)dy.

Ex. 2. Given z = arJ', d^z = yx^-^dx, dyZ = xv log x dy,

dz = yxy-^dx + xy log x dy.

Ex. 3. Given u = tan-i -, du = ^
~ ^^

^
-

X x^ -\- y^

Ex. 4. Assuming the characteristic equation of a perfect gas, vp — Rt,

in which v is volume, p pressure, t absolute temperature, and R a con-

stant ; express each of the differentials dv, dp, dt, in terms of the other

two.

Ex. 5. Being given that in the case of air, R = 96, when p is measured

in pounds per square foot, v in cubic feet, and t is centigrade; and letting

t = 300, p = 2000, V = 14.4 ; find the change in p when t changes to 301,

and V to 14.5, supposing that p changes uniformly in the Interval.

[Perry's Calculus for Engineers, p. 138.]

Since vdp + pdv = Rdt, dv = .1, dt = 1'^

hence dp = - 7.22.
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The actual increment of p will be a little different from this, and is

easily found by direct computation to be — 7.17.

The difference in the results is analogous to the difference between

the ordinate of a surface and the ordinate of its tangent plane, taken

near the coumion ordinate of the point of contact.

96. One variable a function of the other. When there is

a definite relation connecting the variables x and y, the

equation

dz = — dx -\ dy
dx dy ^

may be divided by the differential of either variable,

then
dz dz . dz dy

dx dx dy dx
(1)

dz dz
It is here well to note the difference between -- and -—

.

dx dx
The former is the partial derivative of the functional ex-

pression for z with regard to x^ on the supposition that y
is constant. The latter is the total derivative of z with

regard to a;, when account is taken of the fact that y varies

with X.

It is to be observed that the implied assumption in Art. 94, that the

variables x and y have at any instant some definite numerical rate of

change, is only equivalent to assuming that they vary in some continuous

manner. They need not on that account be expressible as definite func-

tions of the time, or have any fixed relation of dependence upon each

other. On the other hand, a fixed relation of dependence is not pre-

cluded, for Art. 94 only assumes that x, y take the increments Ax, Ay in

the time A/, without inquiring whether one of the increments may not

be determined by the other, or whether they may not both arise from

the increment of some other hidden variable. The supposition that the

letters x, y are independent in forming the partial derivatives is only a

convenient algebraic rule or artifice for obtaining the coefficients of the

differentials r/x, dy, and does not imply the physical independence of

the magnitudes denoted by these letters. Thus the " independence " is

formal, or operational, rather than physical.
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The value of -f- is to be obtained by differentiating the
ax

functional relation between x and y. If this relation ex-

presses y as an explicit function of x^ the right hand mem-

ber of (1) can then be expressed in terms of x alone ; and

the result will be the same as if z had been first reduced to

the form of a function of the single variable 2:, and then

differentiated with regard to this variable.

Ex. 1. A point moves on the surface 2 =f(x, y) in the curve deter-

mined by the cylindrical surface y = <^ (x) ; express dz in terms of dx.

Ex. 2. If ^ = tan-i -^, and ^ x'^ + y^ = 1, find —

•

2x dx

Ex. 3. A point moves on the curve of intersection of the surfaces

z =
<f>

(^x, y), z=f(xyy)'j find the mutual ratio of the rates dxidy: dz

at any point x, y, z.

For shortness, denoting partial derivatives by subscripts,

dz =f-^dx -\-f2dy = cf>^dx + ^2''^.y»

hence dx:dy\dz = <l>2-f^:f^-cl>^: f^<f>.^ - f^K^^

97. Differentiation of implicit functions ; relative variation

that keeps z constant. An important special question is

how to vary x and y so as to keep /(a;, y) from varying. If

z—f{x^y) — constant,

then dz = -^dx-\--^dy = 0^
ox dy

hence the relative rates of change of x and y are given by

the equation df

dy _ dx

di~'"^
dy

Ex. 1. If x pass through the value 2 at the rate of 5 units per second,

at what rate must y pass through the value 3 in order to keep the func-

tion xhj + 3x^2 constant?

Since d {xhj + 3 xy"^) = (2 xy + 3 r/) dx + (j:^ + 6 xy) dy = 0,

hence 39 dx -{- iOdy = 0, dy— — 4| units per second.
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Ex. 2. Defining the elasticity of a gas as the limit of the ratio of an

increment of pressure to the corresponding relative decrement of volume,

find e, the elasticity of a perfect gas under constant temperature.

and by differentiating vp = Rt, keeping t constant,

vdp-\-pdv = 0, -/- = — ^, hence e = D.^ ^ dv V ^

As a geometrical illustration, let a section of the surface

zz=f(x, y) be made by the plane 2 = c, then for all points

on the contour of the section

and if a point describe the contour, the a;-rate and the ?/-rate

will be in the ratio • t- ; ^^^^ this ratio will measure
oy ox

the slope of the tangent to the contour with reference to the

plane zx,

~2 y1 ^2
Ex. A particle is moving on the ellipsoid —}-^ + — =1 at the point

, a?- h'^ c^

ar =^, y =^, 2 = -^; find the relative rates of x and of y so that the
2 2 V2

rate along z may be zero.

Since ^j£^yJy = o, hence ^ = -^ = -^.
cfi b^ dx arb a

Similarly, if a point whose coordinates are x^ y move in a

plane so as to keep the function /(a:, y) constant, then it

describes a curve whose equation is f(x^ ?/) = c, hence the

differentials dx^ dy are connected by

fdx + fdy = (i, (1)
dx ay

and the slope of the direction of motion is given by

dy__¥
. ^

dx dx ' dy
(2)
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In all such cases either variable is an implicit function of

the other, and thus the last equation furnishes a rule for

finding the derivative of an implicit function. In many

examples in practice it is preferable to equate the total

differential to zero, as in (1), and then solve for -^.
ax

Ex. 1. Given x^ + w^ + 3 axy = c, find ^.
ax

Since {Zx'^ + Zay) dx -^ (;^y'^ + ^ax) dy = 0, ^ = -^^±^

Ex.2. /(ax+ 63/)=c; g=a/(ax+ %); ^l= hf{ax+ by)', %=~
Ex. 3. If ax2 ^2hxy + hy^ + 2 gx + 2fy + c = Q, find ^.

dx

Ex. 4. Given x* — y^ = c, find -^•

98. Functions of more than two variables. All of the

methods of this chapter are applicable to functions of three

or more variables.

Let u =f(x, y, 2),

then it can be shown, as in Art. 91, that

dt~"dxdt ^ dt dz dt' ^ ^

or in the abbreviated notation,-

du = ^-^dx + ^dy + ^dz. (2)
dx dy ^ dz ^ ^

No simple geometric representation can be given of a

function of three Variables, but there are man}- examples in

physics of functions of the three jcoordinates of a point ; for

instance, the potential u produced at a point (x, y, 2) by a

given distribution of fixed attracting bodies, is a definite

function of the variables x^ y, z, and equation (2) gives the

rate of change of the potential as the point (2:, y, 2) changes

its position in any direction.
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First let it be required to vary (a:, ^, z) so that the potential

u^f(x^y^z) shall remain constant; then the point must

remain on the equipotential surface whose equation is

/(x, y^ z) = tf, and the differentials of a:, y, z are connected

by the relation

|.. + |.,+|.. = 0. (3)

In such cases z is an implicit function of the two variables

ic, y ; and its differential is expressed in terms of their

differentials by the last equation.

Ex. 1. If the " characteristic equation " of a substance be

/(/?, y, t) = constant

prove m m m =-1.

Since ^clp + ^dv + ^dt = 0,
dp dv dt

hence, if c?y = 0, ~jr = ~ ~^ ' ^ ' Similarly for dp = 0, etc.

Ex. 2. In the equation c^ = a^ + b^ — 2ab cos C, referred to in exercise

6 of Art. 90, find the error in c arising from given small errors in a,b, C,

all the errors being supposed so small that their squares can be neglected

;

within the required degree of accuracy.

99. One or two relations between the three variables a?, y, z.

Again, if the point, instead of moving on the surface u = con,

move on some other surface defined by

z = (f>(x,y). 0)

then dz = ^dx -\-~ dy,
dx dy ^ (2)

and (2) of Art. 98 becomes, by elimination of dz.

\?x ^ dz dxj ^\dy^ dzdyj

"

(3)
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The point has then only two degrees of freedom, indicated

by the independent differentials dx^ cly. If the point be

further restricted to the curve determined on tlie latter

surface by the cylinder

y = -fix-), (4)

then dy = -^'(x) dx^

and (3) becomes by elimination of dy, and division by the

single independent differential dx,

du df dfd(f> fdf dfd(h\ ,^ ^ ,r.

dx dx dz dx \dy dz dyj ^ ^ ^

This derivative could also be obtained by eliminating z

and y before differentiation. The function u in terms of

the single variable x is then

u =f(x,f(x'), (p(x, -^(.r))).

The latter method is usually longer, and is not applicable

at all when equations (1) and (4) are replaced by implicit

relations that cannot be solved for one of the variables.

Ex. 1. M = ca (y — 2), 2 = a sin ^, ?/ = a log - ; find —

•

X a dx

Ex. 2. If u =f(x,i/,z); and if x, y, z are connected by the two
relations <^(.r, y, z) = c^, \f/(^x, y, 2) = Cg; find du in terms of dx.

Differentiating, and denoting partial derivatives by subscripts for

shortness,

du =f^dx-\- /a dy -\- f. dz,

= (fi^^dx + <f>2dy + <f>.^
dz,

= if/^dx -^ {j/2dy + if/^ dz ;

hence, by elimination of dy, dz,

Geometrically speaking, the point (2:, ?/, 2) moves on the

curve of intersection of two surfaces and has therefore only

one degree of freedom.
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Thus the variation of a single independent coordinate

is sufficient to determine the variation of the other coordi-

nates, and of the function u itself.

100. Euler's theorem. Relation between a homogeneous

function and its partial derivatives. Let u =f(x, y, z) be

a homogeneous function of x^ y^ 2, of degree n\ then

5w , bu , dii

ax oy dz

For, let u =Ax^y^z-^ + Bx'^'y^'z^' + —
where « + y5 + 7 = a' + yS' + 7' = ••• = w.

— = a.Ax'^-^y^z'i + a'Bx^'-'^y^'zy -\- —

,

x— = aAx^y^zy + a'Bx'^'y^'zy'-^
dx

\

Similarly,

t/^ = ^Axy^zy + ffBx'^'y^'zy' + —,
dy

z-- = ryAx'^y^zy + 'y'Bx'^y^'zy' -{••".
oz

Adding these three equations,

du ,
du

,
du

ax oy dz

= (a + yS + -i)Ax''y^zy + {a! + /3' + ^'^Bxf^'y^'zy' + ••.

= n QAx^y^zy + Bx'^'y^'zy' + •••)

= nu.

The theorem can be extended to functions of any number

of variables.

If a function^ homogeneous in several variables^ he differ-

entiated partially with regard to each of them; then each

partial derivative he multiplied hy the variable with regard
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to which the derivative was taken; and all these products

added ; the result is n times the original function ; where n

is the degree of the function.

This is known as Euler's theorem.*

EXERCISES

Verify Euler's theorem for the following expressions

:

1. x^^ZxY-'^ xy^' 4.
J.

2. (xi+i/^Xx^ + r). 5. tan-i^.
X

3. sinl
X 6. e'-o + ^sm^.

y2 X^ X

Prove the following identities

:

dx dy

2. u = log(x8+y8+^_3^y,), |f +^ + ^ =_3_

3. uz=2iify', x^-hy^ = (x-hy+\ogu)u.
dx dy

4. u= sin~*(a:y2), :f_ iL_ bL_ = tan^ u sec u.
dx dy dz

5. u=log(tana:+tany+ tan2), sin 2x^ + sin2y^ +sin2 2^ =2.
dx dy dz

6. u= e*sin!/+ eysina:, (|^ j +(|^j =62x^g2y^2e=^+vsin(a:+y).

7. u=log(x+V^H?), a;|H+z/|!f = l.

5x dy

8. u=log^, rfu=-^^ J2g^
a:log^/ ^/(logy)^

a;

9. u=logy», du = logydx+-dy,

10. M=y"°*, rfM = 2/"^*cosa;logyrfa:+-^Hl£_cf3/.

Leonard Euler (1707-1783), one of the most eminent mathematicians

of the eighteenth century.



CHAPTER IX

SUCCESSIVE PARTIAL DIFFERENTIATION

101. • Successive differentiation of functions of two variables.

Let z—f{x^ y), in which 2;, y are functions of another vari-

able t^ which may conveniently be thought of as time. As
the rate of change of 2 is usually variable, it is sometimes

useful to have an expression for the rate of change of this

rate. Just as —- is the rate of change of 2, so — [ — ) is the
dt

^
dt\dt)

rate of change of -— , and it is written —— . This rate of
^ dt dt^

the rate may conveniently be called the acceleration.

It will now be shown that the expression for the z-acceler-

ation involves the a;-acceleration, the y-acceleration and also

the squares and products of the a;-rate and the y-rate, each

with a certain coefficient.

It was proved in Art. 94 that the 2-rate is

dz _ dz dx dz dy

dt~di'di'^d^di' W
Differentiating each term of this identity with regard to U

(Pz _ d (dz \dx dz d'^x d fdz \dy dz d'^y
^ ^on

dt^
~ dt\dx) dt dx dt^ dt\dy) dt dy 'di^' ^ ^

but, since — is itself a function of two variables, hence, by
dx

Art. 94,

dt\dx) dx\dxjdt dy\dxjdt'

173
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also £(^=^[^^ 4. A/^^^^,
dt\dy)~ dx\dyj dt by \dyj dt

'

hence (2) becomes, by substitution and slight re-arrange-

ment,

t?^2 aAWUv \_^y\^x)^Ady)]dt dt

d_

By'

The successive partial x- and ^-derivatives

a

4.J^/^^V^Y+ - d^,^d?y .0.
"^ W; U^/ ^^ ^^^ by dt^' ^

^

;\ax/ dx\dyj dy\dxj oy\dyJ

which appear as coefficients of the squares and product of

the rates will be denoted by the symbols

52^ B'^z BH Bh

Bx^ Bx By By Bx By'^

B'^z
In other words, —^ will stand for the operation of differ-

Bx^

entiating z twice in succession with regard to x^ on the sup-

B'^z
position that y is constant ; and will denote the

BxBy
operation of differentiating z first with regard to y, on the

supposition that x is constant, and then differentiating

the result with regard to x on the supposition that y is con-

stant; and similarly for the other expressions.

With this notation, eq. (3) is

dt^ BxKdt) \_ByBx BxBy\ dt dt

dh fdy\^,dz d?x Bz_^
By\dtJ Bx dt^ By dt^

'

The coefficient of the product of the rates will be further

simplified by the theorem of the next article.
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102. Order of differentiation indifferent.

Theorem. The successive partial derivatives

dy dx dx by

are equal for any values of x and y in the vicinity of which

2 and its first and second partial x- and ^-derivatives are

continuous.

For, let z= f(x^y^\ and first change x into x -\- h, keeping

y constant, then by the theorem of mean value, the incre-

ment of the function is equal to the increment of the variable

multiplied by the derivative taken for some value interme-

diate between x and x -\- h; that is,

dx

Now let y change to y + k,x remaining constant, and take

the increment of the function on the left; then by the

theorem of mean value applied to — /(x -h 6h, y^ as a func-

tion of y, for the increment k,

[fix + h,y + k-)-fix. y + k)-]- U(.x + h, y) -fix, y)]

==kh^j^fix + eh,y + e,k).
ay dx

Next let these increments be given in reversed order ; then

[fix + h,y + k}-fix + h, y}} - [fix, y + k)-fix, y)]

= hk^^^fix + eji,y + 0^ky,

hence

for any values of h and h within the range around the point

(2r, y) within which all the functions mentioned are con-

tinuous.
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When A, Je approach zero,

X -{- Oh, y + 6-Jc, and x + O^h, y + 9Jc

approach (a;, ^), and, by Art. 91,

f(x + eh, y + e,Jc}, fix + e^h, y + ^3^)

approach /(a;, y); and similarly for the derivatives; hence

or, since f{x, y) = z.

By dx dx dy

CoK. 1. It follows directly that under corresponding

conditions the order of differentiation in the higher partial

derivatives is indifferent. In other words, if u and nil its

partial derivatives are continuous, the operations —^ —
...

» r
dx dy

are commutative.

Tjj d^u d^ii d^u

dx dy dx dx^ dy dy dx^

Cor. 2. Equation (3) may now be written in the simple

form

d^~d^\dtj dxdydtdt dyAdtJ

du d^x dii d^y ^A^

dxd^ d^d^' ^ ^

or, if the independent variable t is not expressed,

+g«^.+|.y (5)
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If a: be taken as independent variable, then t is to be re-

placed by x ; and since -— = 0, the equation becomes
CliX^

dx^ dx^ dx dy dx by^ \dxj dy dx^' ^ ^

Similarly, if y be taken as independent variable, and x be

a function of y, then

d^u _ d'^ufdx^^ Q dhi dx d^u du d^x ^rr^

dy^ dx^ \dy) dx by dy by'^ dx dy^

EXERCISES

1. Verify that -^^ = -^, when u = xhfi.

2. yerifythat^ = ^,whenu = .V + .,a

3. Verify that -^^ = -^— , when u = y log(l + xy).
dx dy dy dx

4. In Ex. 3 are there any exceptional values of a;, y for which the

relation is not true ?

5. Given u=(x^ + y^) ?, verify the formula

dx^ dx dy dy^

6. Given u = (x^ + ^^)^, show that the expression in the left member
3 u

of the equation in Ex. 5 is equal to -—
7. Given u=Cx'^ + y^ + ^2)-^ . prove that ^+^+§^ = 0.

dx^ dy^ dz^

8. Given u = sec Cy + ax) + tan (y — ax)
;
prove that — = a^ ojf.

dx^ dy^

9. Given m = sin x cos y ; verify that „ „

10. Given m = (4 a& - c^)"^
;
prove that dj£^_d^

dc^ da db

d*u ^ d^u ^ d*u

dy^ dx^ dx dy dx dy dx^ dy^

"iiL J32,
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11. If u = sin V, V being a homogeneous function of degree n in a: and

v, determine the value oi x— -\- y—

•

^
dx ^ dy

12. If w = tan-i ^-^
, show that -^ = a+x^-\- y^)'^ and

that-^^= ^^^

103. Extension of Taylor*s theorem to expansion of func-

tions of two variables.

Taylor's theorem, as developed in Chapter IV, relates

only to functions of one variable, but it can be readily

extended to functions of any number of variables in a

manner first shown by Lagrange.

Let /(a;, ^) be a function of the two variables a;, y, which,

with its first 2 n partial derivatives, as to x and t/^ is finite

and continuous for all values of x, y within a certain por-

tion of the coordinate plane. It is required to expand

f(^x + A, ^ + A;) in a series of ascending powers of Ti and of h.

Using an auxiliary variable ^, let

7^ = x-{-ht, y^ = y -{-ht, (1)

then f(x\ ^') =f(x + hUy-\- kt) = F(t), say

;

(2)

the development of F(t') in powers of t is, by Maclaurin's

theorem,

F(t-) = ^-(0) + j"(0) . t + Eli^hA + ... /""'W . f-i
Z I {jl — 1)\

-L- ^"(^O tn, [0<6><1. (3)
ni

whence, putting t = 1,
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To express ^(0), ^'(0) .- in terms of A, Ar, first find F'(f),

F"(f), F"'(f), ••• by successive differentiation of (2); then

^^^^-
dt -d/^'^'y^-d^ dt^dy' lu'

but, from (1), -r- = K —?- = h hence
^ ^

dt dt

likewise, ^^ ^^

^-^ dt\dx'J dt\dy'J

\dx'^ dt dx'dy' dt) Kdx'dy' dt dy'^ dt)
'

then putting -— = A, -f- = k,
dt dt

^ ^
dx'^ dx'dy' dy'^

Similarly,

Now when t is replaced by zero in these derivatives, x', y'

reduce back to x, y ; hence

J'(0)=/(:r,2/),

tix dy

ox^ Ox oy dy^

F"'m= ^3^ + 3»-^ + 3 AF-^ + k^%
Bx^ ox^dy oxoy^ dy^

DIFF. CALC. — 13
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and when t is replaced by 6 in F"(t^, x' and y' become

X + 6h and y + 6k, hence

in which f) stands for the binomial coefficient
"

"

rj r\(n — r)l

Therefore (4) becomes

(m-l)!Z^V r J dif^'-'df

+lVf"V>--F^y^^ + ^^-y + ^^), (6)
n\lJ\rJ dz'-'dy'- ^ '

which is the desired form of expansion.

104. Significance of remainder. This expansion is useful

only for those values of x, y^ A, ^, for which the last term,

called the remainder after the {n — l)st powers of h and h,

can be made as small as desired by taking n large enough.

105. Form corresponding to Maclaurin's theorem. The

expansion of a function of two variables in a series of powers

of these variables can be readily obtained from the last

equation.

If it be desired to expand / (a?, ?/) in the vicinity of a, 6,
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let X = a^ 1/ = b ; h = x — a, Ic = i/ — h, then equation (5) of

Art. 103 becomes

/(a^, y) =/(«, *) + (=^ - «) £ + (y - *) f

in which -^ denotes that / (a;, v) is to be differentiated with

regard to x^ and that a: = a, y = h are then to be substituted

in the derivative ; and so for the other symbols.

In particular, if a = 0, 5 = 0, the expansion of / (a;, y) in

powers of x^ y becomes

/(.,.)=/(o,o) +.gL + .[|L

^2!^"^
aa:2

+^^^ 5^5^ +^
a?/^ J

+ ... + 1 V^^-lVn-r^I^r ^"-y(0,0)

These theorems for expansion can be readily extended to

functions of any number of variables.
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EXERCISES

1. Expand c* sin (x + ?/) in powers of x and y.

2. Expand (x -{- yY in powers of x and y.

3. Expand Vx + /i tan (y + ^) in powers of h and A:, and express the

forjn of the remainder after two terms, when ^ = 1, 7c = 1.

4. Expand the function x'^ + y^ + z^ — 4:X + Qy — 2z — 11 in powers

of X — 2, y + 3, z — 1.

5. Arrange the function

3x^-5y^ + 4:x-7y + ll

in powers oi x — 2, y + 3,

6. Transform the equation

x^ + y^ — 3xy = 1

to parallel axes -with the point (1, 2) as origin.

7. What kind of discontinuity has the function ^ ' at the point

(0, 0)? Show that it may have any value between 2 and 3, depending

on the ratio oi y to x as they approach zero. Illustrate geometrically.

8. Write down an expression for the error iii the approximate equa-

tion

(cf. Ex. 5, p. 156 ; Ex. 5, p. 161 ; Ex. 2, p. 1G9).

9. When x = a and y = a, prove that, without discontinuity,

(x - y)fl» + 0/ - q)r» + (« - x)y» ^ n(n-l) ^_^

(^-^)(z/-tO(«-^) ^

10. If u =f(x, y) = c, prove, by (2), p. 167, and (6), p. 177, that

d-ulduY o d-ii dnSu _ydhifSuy

d-y _ dx'^ \ dy /
,

dx dy dx Qy dy'^ \dx/

dx^ Ibny
\du)
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CHAPTER X

MAXIMA Am) MINIMA OF FUNCTIONS OF TWO VARIABLES

106. Definition of maximum and minimum of a function

of two variables. A continuous function z =
(f)

(x^ y) has

a maximum value </> («, 5) for x = a^y = h \i^ as the variables

pass in any manner through the values a and 5, the function

hitherto increasing, ceases to increase and begins to de-

crease ; the function has a minimum value (/> (a, h) if it

ceases to decrease, and begins to increase, for every varia-

tion of X and y through the values a and 6.

This fact is expressed analytically thus : ^ (a, 5) is a

maximum or minimum value of <^ (a;, y) according as the

increment

^ (a -^ h^ h -\- li) — <^ (a^ 6)

preserves a negative or a positive sign for all values of the

increments Ji and h which are numerically less than a given

small number m.

If the function be represented by the ordinate of a sur-

face, then a maximum (or minimum) ordinate ^ (a, h)

is greater (or less) than every neighboring ordinate

</> (a + A, 5 + ^) drawn at any point (a + ^, 6 + ^), irre-

spective of the signs and relative magnitudes of h and h,

107. Determination of maxima and minima. It was shown

in Art. 79 that the necessary and sufficient condition that a

function of one variable may have a maximum or a mini-

183
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mum for a given value of the variable is that its first deriva-

tive change its sign as the variable increases through the

given value. Similarly for a function of two variables, its

differential must change its sign at a maximum or minimum,

independent of the mode of variation of the variables through

these values. Since

dz = -^dx +— dy,
dx by

and since either x oi: y may be varied alone, the first neces-

sary condition is that the coefficients — , — change signs

separately ; otherwise it would be possible to find a mode

(or direction) of variation in which dz does not change

sign ; for instance, if -^ does not change sign, then dz pre-
ox

serves its sign when dy is zero and x increases through a.

Hence the critical values are those at which

dx dy

or at which — , — become infinite.
dx dy

To determine whether these values of a;, y will give a maxi-

mum or minimum value to 2, it is usually impracticable to

test the signs of — , — for all neighboring values of x^ y.

It is consequently necessary to proceed to the higher deriva-

tives. Usually, those values which make — , — infinite,

will also make successive derivatives infinite ; hence such

values will be excluded from the present mode of investiga-

tion.

As an example of a function which has a minimum, and yet has

no partial derivatives, consider
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When X = and y = 0, then 2 = 0; but for every other value of x

and of y, z must be positive ; hence z = is a minimum ; but

a^c 53/
'

^

First expand the function c^ (a + A, 6 + ^) in the vicinity

of (a, 5) by Taylor's theorem ; thus

ox by

^1 bx^ dx by dy^

)

+ higher powers of A, ^

;

but ^=0, ^=0; hence
dx by

Criteria. To distinguish between a maximum and a mini-

mum, at both of which -^ = 0, -^ = 0, it is usually suffi-
bx by

cient to consider the sign of the expression involving terms

of the second degree in A, A; ; for A, h can generally be made

so small that this expression numerically exceeds the sum of

all the subsequent terms ; hence its sign will determine

the sign of (a + A, 5 + A:) — </> (a, 6).

When x = a, y = h, let ^=A, -^=5, ^ = (7,

bar bx by by^

then the quadratic expression can be written in either of

the forms

The first term of the numerator of the last form is always

positive or zero ; the second term has the same sign as

k
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AC — B^. If the latter expression is positive, the numera-

tor is positive for all values of h and k ; but if it is negative,

the sign of the fraction will depend upon the values of

h and /c, and hence there can be no maximum nor mini-

mum ; for instance, the numerator is positive when A? = 0,

and negative when h and h are so taken that Ah+Bk = ^.

The second indispensable condition for a maximum or

minimum is, therefore,

E^kAQ. (1)

This being satisfied, the numerator is positive, and hence

the sign of the fraction is finally determined by the sign

of the denominator A. If A is positive, <^ (a, 6) is a mini-

mum ; if A is negative, </>(«, 5) is a maximum.

It follows from the condition (1) that, since B^ is posi-

tive, A and C must have the same sign.

The whole process may be summarized as follow^s : to

determine whether (x^ y) has either a maximum or a

minimum, equate its first partial derivatives to zero, and

solve the resulting equations -^ = 0, — = 0, for x^ y, Sub-
bx by

stitute these critical values in the three second derivatives

oar oxoy dy^ dx^ oy^

\dx by) bx^ by^

there is a maximum when the common sisfn of —? and —

?

^
bx^ by^

is negative, and a minimum when it is positive.

It is instructive to examine the form of the representative

surface in the vicinity of the critical point, especially when

some of the conditions for a complete maximum or minimum

are not satisfied. The geometric meaning of all the condi-
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tions (except the one regarding the sign of B^ —AC) is

immediately evident by considering the conditions that the

ordinate may have a turning value in each of the vertical

sections parallel to the coordinate planes. The deportment

of the ordinate in the intermediate sections depends on the

sign of B^—AC^ the discriminant of the quadratic expres-

sion in A, k, as will be illustrated in the examples.

Special cases can arise in which ^ = 0, ^=0, (7=0, or

when B^ —AC =0. It is then necessary to consider the

higher degree terms. Instead, however, of finding general

test formulas for such cases, it is better to Avork special

examples independently. The higher degree terms can in

many other cases be made to give useful information regard-

ing the deportment of the function in the vicinity of the criti-

cal value, especially in cases of incomplete maxima or minima.

The method of Art. 167 will be helpful (Note C, p. 318).

EXERCISES

1. Find the maximum and miniiiiura vakies of

<^ C-^' //) = 3 axf/ - x3 - ?/3.

Here ^ = 3av-3a;2; ^ = 3ax-3y^.
dx dy

The critical values are therefore x= a, y= a; ar= 0, y= 0.

a!^=^6x; -^=3a; ^=-6y.
dx' dxdy dy^

Atx = 0, y = 0, A=0, B = 3a, C = 0,

hence (0, 0) is neither a maximum nor a minimum.
At x= a, y = a,

A = -6a, B = 3a, C = -6a.

In this case both ^ and ^ are negative, and B^<AC, hence <ti(a,a)
dx- dy'

has a maxmium value a^.

2. Exhibit graphically the deportment of the function

z = 1 - 4 x2 + 21 xy - 5 ?/2 ^. x3 4- 2/^

in the vicinity of the critical point (0, 0).



188 DIFFERENTIAL CALCULUS [Ch. X.

It is here unnecessary to find the derivatives, as the function is already

expanded in the vicinity of the point (0, 0), the letters x and y taking

the place of the increments h and k. The absence of the first degree

terms shows that tlie point (0, 0) is a critical point. As the discriminant

of the second degree terms, 2P — 4-4-5, is positive, the quadratic

expression has real factors, and can therefore be made to change its

sign for different ratios of y to x; hence there is no complete maximum
nor minimum,

To distinguish the sections that have a maximum ordinate at this

point, from those that have a minimum ordinate, write the equation in

the form

2 = l-5(2/-|)(y-4^)+a:3 + y3,

which shows that the second degree expression is zero when the ratio of

y to a; is either ^ or 4 ;
positive when this ratio lies between | and 4 ; and

negative for all other values of the ratio. Hence, all vertical sections

y \ y
within the acute angle between the directions - = - and -=4 have a° X D X

minimum ordinate at (0, 0) ; and all vertical sections within the obtuse

angle have a maximum ordinate at this point. In the first transition

direction - = f '

, = 1+^3+^ = 1+126^3.
12o 120

hence the increment of the ordinate is positive when x is positive, and

negative when x is negative; and there is neither a maximum uor mini-

FiG. 25.

mum, but an inflexion, in the transition section. Similarly for the other

transition direction. The two horizontal inflexional tangents in these
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vertical sections are also tangents to the contour of the section made by
the horizontal tangent plane through P (Fig. 25).

Some idea of the form of the cubic surface at the critical point P is

given in the figure. It shows the vertical sections XPX', YPY' in the

coordinate planes, in both of which OP is a maximum ; the transition

sections APA\ CPC\ the contours of which bend upwards in the first

quarter, and downwards in the third quarter; and an intermediate section

BPB\ in which OP is a minimum.

If the third degree terms were absent, the transition contours A PA',

CPC would be straight lines, the surface would be a hyperbolic parabo-

loid, and XYX'Y' would be a parallelogram.

3. Examine the deportment of the function

z = - 70 + 38 a: - 60 2^ - 10 x2 + 12 x?/ - 15 3/2 ^ 2 x« - y»

in the vicinity of the critical point (1, — 2).

Differentiation and substitution give

5i^0, ^=0, ^ = -8, -^^=12, ^ = -18;
dx ' By dx^ dxdy dy^

^=10 _5!i_=o -^=0 ^ = -6
dx^

*'
dx'^dy ' dxdy'' '

dy""

Hence the expansion of the function in the vicinity of the point (1, —2) is

^(l +^, -2 + k) = ^(\,-2) - ^h'^ + 12hk -^k-^ + '2h^ - k\

This is one of the exceptional cases referred to above, in which the

discriminant B' — AC vanishes, and the terms of the second degree form

a complete square. Thus,

<^(1 +A, - 2 -h k) - <li(l, - 2) = - (2h -^ky + 2h^ - k?,

hence the increment of the function is negative for all small values of

h and k, unless when k = —:, and thus the ordinate <^(1, — 2) = 4 is a
o

maximum in every vertical section but one. In this section the incre-

ment of the function is A<^ = 2 A^ — (| hy — fy^^ hence the contour of

the section bends upw^ards in the first quarter and downwards in the

third quarter.

In Fig. 26, XPX' and YPY are the contours of the sections parallel

to the coordinate planes, and APA' is the contour of the vertical section

in the intermediate direction k = ^h. This may be regarded as a

limiting case in which the two transition directions coincide. The hori-
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zontal tangent plane at P cuts the surface in a curve which has a cusp

at that point; tlie cuspidal tangent coinciding with the inflexional tan-

gent to the vertical section just mentioned.

Fio. 26.

4. Find the transition directions in exercise 1 for the critical point

(0, 0), and show the form of the surface in the vicinity of the point.

5. Examine the function 2 = x^ — 6 xy"^ + cy^ at the point (0, 0).

Show that if c> 9 there is a minimum ; and if c > 9, neither maximum
nor niininjum. Draw graph.

6. Show that xe^+^sinj' has neither a maximum nor a minimum.

7. Divide a into three parts such that their continued product may be

a maximum.

8. Find the minimum surface of a rectangular parallelopiped whose

volume is a^.

9. Wliat value of x, y will make 1 + a:2 + yi

by
a maximum or a

mmnnum r

10. Find the values of x and y that make sin x + sin y + cos (x + y)
a maximum or a minimum.

11. Find the maximum of (a — x') (a ~ y^ (x \- y — a).

12. The electric time constant of a cylindric coil of wire is

mxyz

ax + by -t cz

where x is the mean radius, y is the difference between the internal and

external radii, z is the axial length, and m, n, h, c are known const.ints.

The volume of the coil is nxyz = rj. Find the values of x, y, z to make u

a minimum if the volume of the coil is fixed. (Perry's Calculus.)
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108. Conditional maxima and minima. Maxima and

minima of implicit functions. In certain problems the

maximum or minimum values of a function of two variables

are desired, when the mode of variation of x and ^ is re-

stricted by an imposed condition.

Let the function be z =f(x^ y), and let the assigned con-

dition be (f>(x^ y) = Q ', then it is required to find the maxi-

mum or minimum values passed through by the function z,

when X and y vary consistently with the relation
(f>

(x, ^) = 0.

This problem may also be stated in the following geomet-

rical form : A point moves on the surface z =f(x, y^ in

the curve of intersection made by the cylindrical surface

(^(2:, ^) = ; find the maximum and minimum values of its

height above the horizontal coordinate plane.

Since the variables x and y always satisfy <^ (a:, y) = 0,

hence their rates of change are connected by the relation

but, since 2 is at a turning value, its rate of change vanishes,

hence

therefore, by elimination of dx and dy,

^^_^^ = 0. (3)
dx dy dy dx

This equation, together with <^(a:, y) = 0, will determine

the critical values of x and y.

The value of the function 2, corresponding to a critical

value, will be a maximum or minimum according as dh is

negative or positive ; but

dh=^dx^-\-2-^dxdy + ${dy^ + ^d^x-j-^d^y, (4)
dx^ dxdy ^ dy^ ^ dx dy ^ ^

^
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to eliminate d?x^ d^y^ multiply (4) by -^ and (5) by —

,

By by
subtract, and take account of (3) ; then

V^= (</>2/ii-/2'^ii)«'^+2(<^2/i2-/i<^:2)-'^'^y

+{.^Jr>.-Ui>-Liyiy^ (6)

in which the subscripts 1, 2, indicate differentiation with

regard to x^ y^ respectively. The sign of the right hand

member of (6) is not changed by dividing by d^^ and then

replacing
-f-

by — ^, from (1); hence the sign of d?'z at a
dx

^

<p2

critical point is the same as the sign of

+ (<^2/22-/2<^22)^lT;

which is therefore sufficient to discriminate a maximum
from a minimum.

Ex. 1. If z=x^-\-y^— daxy, and if x and y vary subject to the condi-

tion a;2 + ^2 _ 3 ^2. show that z passes through a miniinuui when x= 2a,

t/ = 2a.

Here, fi = S(x^-ay), /2= 3(?/2-a^), f^^ = Qx, f^2=-3a, /22= 6y,

<t>,
= 2x,

<f>,
= 2y, <f,,,

= 2, cf>,,= 0, 4>,,= 2.

The critical values are found from ^j/g — (^g/i
= ^ ^^^^ x^-\-y^ = Sa^;

and one pair is easily found to be a:= 2 a, y = 2a. At this critical point

/i = 6a2, /2= 6a2, f^^= \2a, f^o=-da, foo= l2a,

<^i=4:a, <^2= 4a, <Aii=2, <^i2=0, <^22= 2;

and the sign of the discriminating expression above is found to be posi-

tive, showing that z is a minimum.

Ex. 2. Show that the maximum and minimum of the function x^+y^,

subject to the condition ax^-\-2 7ixy^-hy^= \^ are given by the roots of the

quadratic equation
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hence show how to find the axes of the conic defined by the above

equation of condition.

Ex. 3. Find the minimum value of x'^-\-y% subject to the condition

a b

Note. When the equation <j) (x^ y) = can be solved for

one of the variables, the method of Art. 81 can also be used.

IMPLICIT FUNCTIONS

Let y be defined as a function of the single variable x by

the implicit relation f(x^ ?/) = ; it is required to find at

what values of x the function y passes through a maximum
or a minimum.

By successive differentiation, leaving the independent

variable at first arbitrary,

From (1)

hence the values of re, y at which -^ changes sign satisfy
dx

df

dy
dx

ex

df

dy

one of the equations

dx dy

Thus the first set of critical values of x^ with the corre-

sponding values of y^ are to be found from the simultaneous

equations,

/(x,2,) = 0, 1=0,
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and the second set of critical values from

/(^.y) = o, 1 = 0.

These two sets may or may not have values of ar, y in

common.

Those of the first set that do not belong to the second set

make v" = 0, i^^O, and hence make -—- = 0.
dx By dx

To test whether -^ changes its sign, in passing through

zero, the method of Art. 82 is available. Taking x as the

independent variable in (2) and putting -^ = 0, ^ = 0, it

gives

b\f

^y 52^

dx^" ¥
by

Hence for the critical values under consideration, y is a

maximum or a minimum accordinsf as -^-k^ -— have the same
° ox^ oy

or opposite signs.

Those of the second set of critical values that do not be-
•J

/• »> /•

lonff to the first set make -^^ = 0, — =?^ 0, and hence make^ By ' dx

-f- infinite.
dx

To find whether -f~ changes its sign, the second derivative
dx

is not available, since it and all subsequent derivatives are

infinite ; but methods of trial may be resorted to, in which

assistance can often be derived from the graphical represen-

tation of the function.

The critical values that are common to the first and the

second set make ^ = 0, ^ = 0, and hence render ^ inde-
ox By dx



108.] MAXIMA AND MINIMA IN TWO VARIABLES 195

terminate in form. When numerically evaluated it is either

zero, infinite, or finite. In the last case -^ cannot change
dx

its sign and there is no turning value of i/. In the first two

cases the question whether -^ changes its sign as x passes
ax

through the critical values, and y changes correspondingly,

is to be decided by trial.

Ex. 4. Given (x^ + y^y - 2 y (x^ -\- y^} - x^ = 0;

find the turning values of y, and the corresponding values of x.

Since
dy__2x(x^±f)-2xy-x ,^.

the first set of critical values are found from

(x2 + y2)2 _ 2 y (a;2 + 2/2) - x^ = 0, (2)

x[2(x^ + y^)-2y-^=0. 00

Equation (3) is satisfied by a: = 0, which, substituted in (2), gives

y = 0, OT y = 2. Equation (3) is also satisfied when

2(^2 + 3,2) _ 22/ -1 = 0,

I.e., when x^ = — y^ + y+hy which substituted in (2) gives y = — \, whence

X = ±A3 ': Thus the first set of critical values of (x, y) is composed

of the four pairs

:

(0,0), (0,2), (.43, -.25), (-.43, -.25).

The second set is found from (2) and the equation

2y(x-^ + 7/)-x^-Sy^ = 0, (4)

which, on eliminating x% gives y = .75 or 0, whence a: = ± 1.3 or 0.

Thus the second set of critical values of x, y is composed of

(0, 0), (1.3, .75), (-1.3, .75);

the values (0, 0) being common to both sets.

To test the remaining critical values of the first set, use the second

derivative

d^y _ dx^ _ fi .r^ + ^ y"^ - ^ y - 1

dx'^~ d£~ 2y{x^ + y'-)-x'^-'6y^

dy
DIFF. CALC. 14
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which, for (0, 2) is negative, and for (.43, -.25), (-.43, - .25) posi-

tive ; hence, when x passes through 0, the function y passes through a

maximum value 2, and when x passes through — .43, .43, y passes

through a mininmm value —.25. It is to be observed that in the latter

case the function has three other values (or branches), real or imagi-

nary, that do not pass through turning values when x passes through

± .43.

To test the critical values (0, 0), for which equation (1) becomes inde-

terminate, evaluate the function in the usual way, by replacing both

numerator and denominator by their respective total a;-derivatives.

This gives

(6x2 + 2?/2_2y-l) + (4a:y-2a:)^
dy (ix

,

^^ (4xy-2a;) + (2x2+G3/2_6y)'^
dx

... (2x2+62^2_6^)^^j%(8a:y-42:)/'£U(6a:2+2y2_2y_l)=0,

a quadratic equation in -^- Now put a: = 0, ?/ = ; the two roots of the

equation become infinite, hence -^ = oo. In the present case it is easy to

find by trial whether
-f- changes sign ; for in the vicinity of the values
dx

(0, 0) equation (1) may be written in the approximate form

dy _ — a;

dx a;2 + 3 ^2

in which only the important terras are retained ; hence -^ changes sign

from + to — as a: increases through zero, and thus y passes through a

maximum.
The values (0, 0) could also be shown to give a maximum without the

use of derivatives, by observing that in the vicinity of the values (0, 0)

equation (2) can be replaced by

a:2 + 2 y3 = 0.

When X is small, and either positive or negative, y must be negative;

but when a: = 0, then ?/ = ; hence y = is a maximum value of the

function.

It is not easy to test the other critical values at which -^ becomes
dx

infinite without anticipating the methods of curve tracing. It will appear

by the methods of Chapter XVIU that the graph of the function is as
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ill the accompanying figure, and that the critical values last mentioned

are neither maxima nor minima values for y.

Fig. 27.

Ex. 5. Given x* + 2 ax^y — ay^ = ; find the maximum and minimum
values of y, and of x.

Ex. 6. If a:^ + y3 — 3 axy = 0; find the maxima and minima of y.

Ex. 7. If 3 a^y"^ -f xy^ + 4 dx^ — ; find the turning values of x, y.

Ex. 8. Show that in the vicinity of a maximum or minimum value

of f(x, y), the increment A/ (a:, y) iS an infinitesimal of an even order,

when Ax and Ay are of the first order.

When is A/(a:, y) of the third order?



CHAPTER XI

CHANGE OF THE VARIABLE

109. Interchange of dependent and independent variables.

It has already been proved in Art. 22, as the direct conse-

quence of the definition of a derivative, that if y=(t>(x)^

then

dx dx (1)

dy

This process is known as changing the independent varia-

ble from X to y. The corresponding relation for the higher

derivatives is less simple, and will now be developed.

To express

as to x^

dx

but

dx^

dx

dy'

d^x

dy^'
in terms of -— , —— , differentiate (1)

d3?

1 d 1

dx -dy dx

[dy\ .dy]

dy^

dx

d^

dy
1_

dx

dy
^

dx

dy

dy

hence

1_

dx

dy

,

d^_
dx^~

_df_

\dy)

d^x

_df_
dxY
dy)

198

(2)
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In a similar manner,

d3^~ T^Y ^^

110. Change of the dependent variable. If y is a function

of z, let it be required to express -^, --^, ... in terms of

dz a^
dx dx^

Let 2/ = </>(z), then

dx dz dx dx

d?y _ d (dy\
^ dz^__^fj^r(^ '\dz\

^
dz^

dx^ dz\dxj dx dz\ dx) dx

=*"«(D'-*'«s(l)-l^

'

but the second term can be expressed directly as <^'(z)

hence

d^

d^'

The higher a:-derivatives of y can be similarly expressed

in terms of 2:-derivatives of z.

Ex. Show that (4) may be regarded as a special case of (6), Art. 102,

in which one of the variables is replaced by a constant.

lU. Change of the independent variable. Let ^ be a

function of a;, and let both x and y be functions of a new

variable t. It is required to express -^ in terms of -^ ; and

^ in terms of ^ and ^.d^ dt dfi
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By Arts. 21, 51,

dy _ dt

dx dx

~di

d^y dx d^x dy

Wdt~W~di
d^~ fdx\^

At

(1)

(2)

If x be given as an explicit function of t in the form

=/(0, then
^

may be written

X =/(^), then — =/'(^), -—=f"(ty^ and the last equation
CLL CLt

(Py_dy f"(t)

d?y_ dt'^ dt\f'{f) (3)

dx^~ [/(OP *

In practical examples it is usually better to work by the

methods here illustrated than to use the resulting formulas.

EXERCISES

1. Change the independent variable from x to z in the equation

a;2^ + a:^ + v = 0, when a; = e*.

dx^ dx ^

dx dz

dx"^ dz'^ dz

Hence x^^-^x^ + y = becomes —̂ + y = 0.
dx^ dx dz^

2. Interchange the function and the variable in the equation

fM + oJ'UiY^o.
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3. Interchange x and y in the equation

Mm'R

4. Change the independent variable from x to y in the equation

^(d^y_dyd^_d^(dyy^
\dx^} dxdx^ dx^Xdx)

5. Change the dependent variable from y to z in the equation

dx'^ l + y2 \dx}
^

6. Change the independent variable from a: to y in the equation

a;2— + x— +M = 0, when y = logx.
dx^ dx

7. If 2r is a function of x, and x a function of the time f, express the

y-acceleration in terms of the a;-acceleration, and the ar-velocity.

Since
dy^dydx^
dt dx dt

hence ^ = dy<l^^rjx^dld_y\
dt^ dx dl^ dt dt\dxl

r . d [dy\ _ d (dy\ dx _ d'^y dx

dAdxl ~ dx\dx) dt
~ dx^ dt

hence
d^ ^ dy djx dPy (dA\
dt^ dxdt^ dx\dtj

In the abbreviated notation for ^-derivatives,

Compare this result with (4), Art. 110, and with (6)} Art. 102.

112. Change of two independent variables. hQtu—f(x,y')

be a function of the two variables a;, y which are themselves

functions of two new variables w^ z\ it is required to ex-

5?* du ' , o du du
press — , — m terms ot —-,

—

-

ax dy aw oz •
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I. The variables x^ y explicit functions of w^ z.

Let u =f(x, ?/); x = <i>^(iv, z)\ ^ = (i>^(w, 2).

Since u is the function of w and 2,

—^ = — -^ + ^--^ Cz regarded as constant).
aw ax aw By aw

The values of — , -^ are to be found from x = 6^^ y = 60,
dw aw

thus ^^^l^Ai^^l^A^,
dw dx dw dy dw

Similarly, ^ = |£^ + f#i,
dz dx dz dy dz J

(1)

(w regarded as constant).

In the expression for -r— , 2 is to be regarded as constant,
dw

and w as variable ; and x^ y as functions of w.

In the expression for —- , ?^; is to be regarded as constant,
dz

and z as variable ; and a;, ^ as functions of z.

If X, y be called the old variables, and z, w the new
variables, then it appears from the above expressions that

when the old variables are explicit functions of the new

variables, the new derivatives — , — are explicit functions
dw dz

of the old derivatives —-, -—• The last two equations may,
dx dy

when desired, be solved for — , —'
dx dy

II. The variables iv, z explicit functions of x, y.

Let z = -fj(a;, ?/) ; w = yjr^(x, y),

then Ji — Ji-E^J^^ (y regarded as constant),
dx dw dx dz dx ^^ ^ ^

du dudw
, du dz . , -, . . >,—- = f--r (x regarded as constant).

dy dw dy dz dy
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Substituting the values of —-, — , — ,
—- from z = -Jr.,

dx by dx oy

w = -i/tj, the last equations become

z dx
(2)

dx dw dx dz dx
'

du_&U dyjr^ du dyjr^

dy dw dy dz dy

n7y 0*1/

These equations may, when desired, be solved for —, —

.

dz dw

In this case the new variables are explicit functions of

the old ones, while the old derivatives are explicit functions

of the new ones.

Ex. Let u= x^-y^, x==pcos$, y = psu\e. Find ^, ^ by the

method of I.
dp dO

du^dudx dudi
(^ regarded as constant),

dp dx dp dy dp ^

= 2x cos 9 — 2y sin 0,

= 2pcos2^-2psin2^,

= 2pcos2^,

which agrees with the result of direct substitution.

^^^'"' I =1 1 +g i ("
''^^^'^^^ - ''°""'*''*^'

•

= — 2 a:p sin 6 — 2yp cos $,

= — 4 p2 cos 6 sin 0,

= -2p2sin2^,

which also agrees with the result of direct substitution.

Next suppose the new variables p, 6 are expressed in terms of the old

variables x, y in the form p = Vx^ + y\ $ = tan-i^ ; find ^, ^ by the

method of II.
^ ^P ^^

Here dE = _^ = cos ^; 5^ = _^i_ = _ ESi,
dx Var2 + y^ dx x^ -^ y^ p

dE= y =sing; ^ = -
^ ^g^

dy Va;2 + m2 dy x^ + y^ p
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^^* t-'^ =%fyfei (^-garded as constant),

hence 2pcos^ = |^ cos^ -^ . ^i^i; n)
dp ou p

also, ^ = -2y=^^ + ^^^ (X regarded as constant),
By dp By od By

hence - 2p sin^ = |l^ sin^ + |^ ^^. (2)
Bp BO p

Now, solving (1) and (2) for 4^, ^, it follows that
Bp od

^ = 2pcos2e, ^ = -2psm2e;
dp Bu

the same results as were obtained before.

III. The relation between a:, y and w^ z defined by implicit

equations.

Let f^(x,y,z,w')=0, f^(x, y, z, w)= 0.

In the first place, to find ^, -^ required in I (1), diiffer-

entiate the two given equations partially with regard to 2,

then

Bz Bx Bz By Bz

(w regarded as constant)

Bz Bx Bz By Bz

solve the resulting equations for —, -^, then substitute in

(1) and proceed as before.

Similarly for ^, ^.
Bw Bw

113. Change of three independent variables. The student

will not have much difficulty in extending the theory to

functions of three or more variables.
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Let u =f(x, y, z) ; and let x, y^ z be functions of three

new variables w, v, w^ connected by the equations

X = (^i(w, V, w), y = </>2(w, V, w}, z = <t)^(u, V, vf). (1)

It is required to express -^ in terms of w, v, t^.

dx

JL — J- [._^_^_l_^ . (u, ?^; regarded as constants),
du dx du dy du dz du

df df dx df dy dfdz . , , ^ ^ .-^ = -^- ^^-£-^-±— (u^w regarded as constants),
dv dx dv dy dv dz do

-^ =^— + -^-^4--^— (u^v regarded as constants).
dw dx dw dy dw dz dw

From (1), —, —, —, -^, ••• can be found; their values
du dv div du qj.

are to be substituted in the equations for ^, •••, and the re-

df df
suiting equations solved for i ^, •••.

dx dy

Similarly for the case in which u, v, w are explicit func-

tions of 2;, y^ z.

114. Application to higher derivatives. The second and

higher derivatives can be obtained in the same way. As

the general formulas become too complicated to be of much

use, it is better to work out special examples independently.

Ex. Express h ^— in terms of p, 0, given
dx^ dy'^

X = pcosO, y = p sin 6. (1)

The general formula is

du _ du d£_ _^ d^ dO^

.

/^^
dx dp dx dO dx

'

in which ^, — are to be obtained from (1), by differentiating and
dx dx

solving.
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Thus l = ^cos^-psin^^,
dx

^
dx

{y regarded as constant)

;

O=|£sin^ + pcos^^,
dx

'^

dx

hence 5fi ^ .^s ^, ^ = - ^HL^.
(3)

dx dx p

Similarly ^, — can be obtained from (1)

:

dy dy

{x regarded as constant)

;

= ^cosO-psme^,
dy

'^
dy

(4)

(5)

l=^sin^ + pcos^^,
dy

'^

dy

hence ^ = sin^, ^ = S£^.
dy dy p

Substitution from (3) in (2) gives

dx dp dd p

A repetition of this process gives

d^^d^ cos^Q _ ^^M sin ^ cos

g

^M sin^^ d'^u cos g sing

dx^ dp^ dOdp p dp p dOdp p

^u Biw'^O du cos 6 sin du sin ^cos^ ^^.

dS' p2 ^ dO p2 ^'dO J^
^^

The expression, similar to (2), for ^, combined with (4), leads to
dy

d^ = du^^^^ ducosO
7

dy dp dO p ' ^ ^

and when this step is repeated, there results,

a^^5% ^in2g
d^u sing cos g ^m cos^^ d^u cos ^ sing

dy^ dp^ dOdp p dp p dOdp p

d^ucos,^6 ^M cos g sing gt/ sing cos g
.

,gv

dO' p2 dO p2 de p^ ' ^ ^

and the addition of (6) and (8) gives the required identity

d^u
^
d^u^d'^u 1 du ,

I d^u

dx^ dy"" dp" pdpp" dO'
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EXERCISES

1. Given x = pcosOy y = p sin 9, y being a function of x, show that

d^_ [del ^d6^

/cos^^-psin^Vdx^

2. Given x = a(l — cos 0> y = a(nt -{ sin t); prove that

rf^.y _ n cos ^ + 1
.

rfa;=^ a sin* t

3. If ^ = X cos a — y sin a, i; = a: sin a + y cos a, prove that

4. Given x = p cos 6, y = p sin ^, show that

ax ^a^^ ds dx ^ dy ^ dp

5. If x = p cos 0, y = p sin ^, show that the expression

l-(g)l* }'-©•!•
becomes



APPLICATIONS TO GEOMETRY

CHAPTER XII

TANGENTS AND NORMALS

115. It was shown in Art. 17 that if /(a;,y) = be the

equation of a plane curve, then
-f-

measures the slope of
ax

the tangent to the curve at the point x^ y. The slope at a

particular point C^i^l/D ^^^^^ ^^ denoted by -^, meaning

that x^ is to be substituted for x, and ?^, for ?^ in ^ =
ax df

after the differentiation has been performed. 5^

116. Equation of tangent and normal at a given point.

Since the tangent line goes through the given point (xj, y^)

and has the slope -^, its equation is
dxj^

The normal to the curve at the point (x-^, y^ is the straight

line through this point, perpendicular to the tangent.

208
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I.e.*

dx 1
Its equation is, since __ = __ by Art. 22,

dy dy ^

dx

dx-, . >,

(2)

117. Length of tangent, normal, subtangent, subnormal.

The portions of the tangent and normal intercepted between

the point of tangency and the axis OX are called, respec-

tively, the tangent length and the normal length; and their

projections on OX are called the subtangent and the sub-

normal.

Fio. 28 a. Fig. 28 d.

Thus, in Fig. 28, let the tangent and normal at P to the

curve P (7 meet the axis OX in ^and iV, and let MP be the

ordinate of P, then TP is the tangent length,

PN the normal length,

TM the subtangent,

MN the subnormal,

which will be denoted, respectively, by ^, w, t, v.

Let the angle XTP be <^, then tan </> = m, say

:

1
cos =

Vl4-w2
sin<^ = m

VlT w-"
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sm 9 m cos
(f>

^^

^ , dx. y. ^ ,
dii.

T = ^1 cot =
y^-^^-^

= ^i ^ = yi tan <^ = i/i^ = M?/j.
^

The subtangent is measured from the intersection of the

tangent to the foot of the ordinate ; it is therefore positive

when the foot of the ordinate is to the right of the intersec-

tion of tangent. The subnormal is measured from the foot

of the ordinate to the intersection of normal, and is posi-

tive when the normal cuts OX to the right of the foot of

the ordinate. Both are therefore positive or negative, ac-

cording as <!> is acute or obtuse.

The expressions for r, v may also be obtained by finding

from equations (1), (2), Art. 116, the intercepts made by

the tangent and normal on the axis OX. The intercept of

the tangent subtracted from x-^ gives r, and x^ subtracted

from the intercept of the normal gives v,

EXERCISES

1. In the curve y(x — l)(x — 2) = a: — 3, show that the tangent is

parallel to the axis of x at the points for which x = 3 ± V2.

2. Write down the equations of the tangents and normals to the

curve y =—-— at the points for which y = -•

a^ + x"^ 4

3. Find the equations of the tangents and normals at the point (ar^, yj
on eech of the following curves

:

(a) a;2 + 2/2 ^ c% (c) xy (x + y) = a^

(b) xy = k\ (d) ey = sin x.

4. Prove that - + ^ = 1 touches the curve y = 6e~« at the point in
a h

which the latter crosses the axis of y.

5. Find the points on the curve

y = (.r - 1) (X - 2) (X - 3)

at which the tangent is parallel to the axis of x.
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6. Find the intercepts made upon the axes by the tangent at (xj, y{)

to the curve Vx + Vy = Va, and show that their sum is constant.

7. In the curve x^y"^ = a^(x + y), the tangent at the origin is inclined

at an angle of 135° to the axis of x.

8. In the curve x^ }- y's = a^, find the length of the perpendicular

from the origin on the tangent at (x^, y^ ; and the length of that part of

the tangent which is intercepted between the two axes. (A. G., p. 323.)

9. Show that all the curves represented by the equation

when different values are given to n, touch each other at the point (a, h).

10. Show that all the points of the curve

^2 = 4a (a: + a sin -|,

at which the tangent is parallel to the axis OX lie on a certain parabola.

11. Prove that the parabola y^ = 4:ax has a constant subnormal.

12. Prove that the circle x'^ + y^ = a^ has a constant normal.

13. Show that in the tractrix, the length of the tangent is constant

;

the equation of the tractrix being

X = Vc'^ — y-i ^ - log
C + Vc2 - V^

14. Show that the exponential curve y = ae^ has a constant subtan-

gent.

15. At what angle does the circle x'^-\-y^ = ^ax intersect the cissoid

3^2 = -^^? (A. G., p. 309.)
2a — X

x^
16. Find the subtangent of the cissoid y^ =

2a-x

17. Find the normal length of the catenary y =- (e^ -\- e «).

18. Show that the only Cartesian (x, y) curve in which the ratio

of the subtangent to the subnormal is constant is a straight line.

19. Show that the equation of the tangent to the curve f(x, y) =
at the point (a:^, y^) may be written

DIFF. CALC. — lij
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20. Prove that the equation of the tangent to the curve

z^ -Saxij + y^ =

may be written x^^x — ax^y — axy^ + y^y = cix^y^

POLAR COORDINATES

118. When the equation of a curve is expressed in polar

coordinates, the vectorial angle 6 is usually regarded as the

independent variable. To determine the direction of the

curve at any point, it is most convenient to express the angle

between the tangent and the radius vector to the point of

tangency. .

Let P, Q be two points on the

curve (Fig. 29). Join P, Q with

the pole 0, and drop a perpen-

dicular Pilf from P on OQ. Let p,

6 be the coordinates of P ; p + A/),

6 + AO those of Q ; then the angle

POQ^AO', FM=psmAd; and

MQ=OQ-OM=p+Ap-p cos AS;

p sin A^

Fig. 29.

hence tan MQP =
p + Ap — p cos AO

When Q moves to coincidence with P, the angle 31QF
approaches as a limit the angle between the radius vector

and the tangent line at the point P. This angle will be

designated by i/r.

limThus . , iim p sin A6

but

hence

p(l - cos A^) = 2 p sin2 j- Al9,

tan i/r
lim

sin A^
~Ae~

• 1 A /) sin i^AO ,
Ap'
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but

Therefore

TANGENTS AND NORMALS

lim sin A^ _ -,

A(9

lim sin J A^
Ad = lA^

tant = ^=^^.
dO

Examples on dynamical interpretation.

Ex. 1. A point describes a circle of

radius p; prove that at any instant the

arc velocity is p times the angle velocity;

i.e.,
dt

Ex. 2. When a point describes any

curve, prove that at any instant the ve-

locity — has a radius component ^ and
^ dt

^
dt

7/3

a circle component p— , and hence that

, dp . , dd . , dO
cos lA = -^, sm i/f = p— , tan }p = p—

-

f/s (/s ap

213

Fiu. 31.

119. Relation between |^ and ^. If

the initial line be taken as the axis of x,

the tangent line at P makes an angle

with this line by Art. 117. Hence

e + ylr = (t>;

I.e., 6 + tan"

it)
tan'

dxj
Fia.

120. Length of tangent, normal, polar subtangent, and polar

subnormal. The portions of the tangent and normal inter-

cepted between the point of tangency P and the line through

the pole perpendicular to the radius vector OP to the point

of tangency, are called the polar tangent length and the polar
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normal length; and their projections on this perpendicular

are called the polar suhtangent and polar subnormal.

Fio. 83 a. Fig. 33 &.

Thus, let the tangent and normal at P meet the perpendic-

ular to OP in the points N, M. Then

PN is the polar tangent length,

PM is the polar normal length,

ON is the polar siibtangent,

OM is the polar subnormal.

They are all seen to be independent of the direction of the

initial line. The lengths of these lines will now be consid-

ered.

Since PN= OP sec OPJV= p sec yjr = py^^(^\\ 1

hence polar tangent length = p—\p'^ + ( -^ ) •

dp ^ \ddJ

Again, 0N= OP tan OPJSr= /o tan i|r = p2^»
dp

hence polar subtangent = /o^^—
dp
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FM= OF CSC 0P]}^= p CSC yjr =\!p^ +
(-j5f

hence polar normal length = \p^ +
( 3Z )

*

OM

hence

OF cot OPN=^.
pad

polar subnormal iP.

dd

The signs of the polar tangent length and polar normal

length are ambiguous on account of the radical. The di-

rection of the subtangent is determined by the sign of

p2— : when -— is positive, the distance ON should be meas-
dp dp

ured to the right, and when negative, to the left of an

observer placed at and looking along OP \ for when 6

increases with /a, —- is positive (Art. 20), and -^ is an acute
dp

ci0
angle (as in Fig. 33 h) ; when 6 decreases as p increases, —

-

dp
is negative, and -^ is obtuse (Fig. 33 a).

EXERCISES

1. Show that the polar subtangent is constant in the curve p6 = a.

2. Show that in the curve p = a - e^cota, the tangent makes a constant

angle a with the radius vector. For this reason, this curve is called the

equiangular spiral. (A. G., p. 330.)

3. For the same curve as in Ex. 2, find the polar subtangent and polar

subnormal.

4. Find the angle of intersection of the curves

p = a (1 + cos 6), p = 6 (1 — cos 6).

5. In the circle p = a sin 0, find if/ and <^.

6. In the curve p = a6, show that tan if/
= 0, and that the polar sub-

normal is constant. (A. G., p. 325.)

7. In the parabola p = a sec^ -, show that
<f> + {[/ = tt.



CHAPTER XIII

DERIVATIVE OF AN ARC, AREA, VOLUME AND SURFACE

OF REVOLUTION

121. Derivative of an arc. The length s of the arc AP
of a given curve y =f(x)^ measured from a fixed point A
to any point P, is a function of the abscissa x of the latter

point, and may be expressed by a relation of the form

8 = 4>(x),

The determination of the function ^ when the form of

/ is known, is an important and sometimes difficult problem

in the Integral Calculus. The first step in its solution is

to determine the form of the derivative function -— = d>'(a:),

ax
which is easily done by the methods of the Differential Cal-

culus.

Let PQ hQ two points on the curve (Fig 34); let a;, y
be the coordinates of P; x + Ax,

y -\- Ay those of ^ ; s the length

of the arc AP ; s + As that of

the arc AQ. Draw the ordinates

MP, NQ ; and draw PR parallel

tolfiV; then PB = Ax, EQ = Ay;

arc PQ = As, Hence

r

A JA
1

B

X
.1

Fig
I 1

84.

V

Chord PQ= V(Axf + (A^)2,

216
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As ^As_.P5 ^ As L fAfTherefore
Ax PQ Ax PQ Ax

Taking the limit of both merabers as Aa; = and putting

im _As^ _ 1

it follows that

A^^ o-|7^= 1' ^y ^^^' 1^' Th. 4, and Art. 10, Th. 10, Cor.,
PQ

Similarly

and

I=^R1J

(i;=(iy*(i)"-'».
I.e. ^S^ = (?a:2 ^ ^^2

(1)

(2)

(3)

(4)

122. Trigonometric meaning of ^' ~
due (ty

As P§ As As

it follows, by taking the limit, as Ax = 0, that

dx ,—- — cos 6,
ds

wherein <^, being the limit of the angle RPQ, is the angle

which the tangent drawn at the point (x, y) makes with the

ic-axis.

Similarl}'-, —^ = sin
<f> ; whence — = sec <^ ;

— = esc (^.

ds - - T^ '

^y.

Using the idea of a rate or dif-

ferential, all these relations may

be conveniently exhibited by Fig.

35.

These results may also be de-

rived from equations (1), (2) of

Art. 121, by putting -~- = tan <^.

dy

dy
ds

dx

Fie. 85.
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123. Derivative of the volume of a solid of revolution.

Let the curve APQ revolve about the a;-axis, and thus gen-

erate a surface of revolution ; let V be the volume included

between this surface, the fixed initial plane face generated

by the ordinate AB^ and the terminal face generated by any

ordinate MP.
Let AF' be the volume generated by the area PMNQ\

then AV lies between the volumes of the cylinders gener-

ated by the rectangles PMNR and SMNQ ; that is,

iry'^^x < AF< 7r(y + Ai/yAx,

Dividing by Ax and taking limits,

1^ =
-^^'

124. Derivative of a surface of revolution. Let 8 be the

area of the surface generated by the arc AP (Fig. 36) ; and

AaS' that by the arc P§, whose length is As.

Draw PQ\ QP' parallel to OX
and equal in length to the arc

PQ\ then it may be assumed as

an axiom that the area generated

hj PQ lies between the areas gen-

erated by PQ' and P' Q\ i.e.,

2 TT^As < AaS"< 2 7r(2/ + Ay)As.

Y
F
•-

71I"^y

X
M N

Fig. 36.

Dividing by As and passing to the limit,

dS
ds

dS^dSdi
dx ds dx

2 7ri/,

2 Tryv^dj

(1)

(2)
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125. Derivative of ard in polar coordinates.

Let /o, 6 be the coordinates of P ; p -\- A/), -\- A6 those

oi Q ; 8 the length of the arc KP ;

As that of arc FQ. Let PM be

perpendicular to OQ; then

Pil[f=/osinA^,

MQ = 0$- OM=p-\-Ap-p cos A^

= /o(l — cos A^) + A/0 Q

= 2^sin2-i-A(9-}-A/).
Fig. 87.

Hence PQ^^Qp sin AOy + (2 /) sin2 J Al9 + A/3)2,

Replacing the first member by (
—^ • —^ ] , passing to the

Hmit when A(9 = 0, and puttmg lim =^ = 1, Hm ^HL^ = 1,

1 A /3

lim —,
2 = 1^ it follows that

ds

dS

In the rate or differential notation this relation may be

conveniently written

(?s2 =df^ + p^d^.

and its dynamic interpretation is shown in the figure of

Art. 118 (Fig. 31).
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126. Derivative of area in polar coordinates. Let A be

the area of OKP measured

from a fixed radius vector OK
to any other radius vector OP;

let A^ be the area of OPQ.

Draw arcs PM, QN, with as

a center; then the area POQ
lies between the areas of the

sectors OPJlff and ONQ \ i.e.,

Dividing by AO and passing to the limit, when Ad = 0, it

Fio. 38.

follows that

dA
dS

For the derivative of the area of a curve in x, y coordi-

dA
nates, see Art. 17. The result is —- = y,

dx

x"^ . y^

EXERCISES

ds dA dS dV
dx dx dx dx

1. Given -^ + ^ = 1; find

2. Similarly for the parabola y^ = 4: ax.

3 In the curve gyre* - 1) = e* + 1, show that — = ^^•^]
.

dx e^ — 1

4

di

d<f>

\_dx

Tf ^ be the eccentric angle of the ellipse ^ + ^ = 1, prove tha

— = aVl — e2 cos^ ^, e being the eccentricity.

62

— a sin ^rf<^, dy = b cos <f>d<f}, ds'^ = (a^ sin^
<f>
+ b^ cos^ <}i)d(j>^, etc.]

5. Given p = a cos ^; find % ^•
dd dd

6. In p2 = a^cos 2 ^, show that ^ =^^
dO p

7. Given p = a (1 + cos 0), prove ~ = V2ap.



CHAPTER XIV

ASYMPTOTES

127. When a curve has a branch extending to infinity, the

tangents drawn at successive points of this branch may tend

to coincide with a definite fixed line as in the familiar case

of the hyperbola ; or, on the other hand, the successive

tangents may move further and further out of the field as in

the parabola. These two kinds of infinite branches may be

called hyperbolic and parabolic.

The character of each of the infinite branches of a curve

can always be determined when the equation of the curve is

known.

128. Definition of a rectilinear asymptote. If the tangents

at successive points of a curve approach a fixed straight line

as a limiting position when the point of contact moves

further and further along any infinite branch of the given

curve, then the fixed line is called an asymptote of the curve.

This definition may be stated more briefly but less pre-

cisely as follows: An asymptote to a curve is a tangent

whose point of contact is at infinity, but which is not itself

entirely at infinity.

DETERMINATION OF ASYMPTOTES

129. Method of limiting intercepts. The equation of the

tangent at any point (:rj , y^) being

y-y^ = ^^(x-x{),

221
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the intercepts made by this line on the coordinate axes are

2^0 = ^1

(1)

Suppose the curve has a branch on which x= co and

y = cx) ; then from (1) the limits can be found to which the

intercepts Xq, y^ approach as the coordinates x^^ y^ of the

point of contact tend to become infinite. If these limits be

denoted by a, 6, the equation of the corresponding asymptote is

a h

Ex. 1. Find the asymptotes of the

curve
y2 = 4 x2 + 2 a: + 6.

Since dy^\x±X
dx y

We,, = ._.| =-l±^
= "~ ^ ~ ^, and this = \4x4-1 4

when a; = 00.

y^=y-t-'^^^
a: + 6

V4 x^ + 2 a; -f 6

To evaluate this expression, square

both terms, and then apply the rule of

Art. 73. The value of the square is \\

thus, yQ = ±\.
Hence the asymptotes are

y
1,

Flu. 89.

».e., y = 2x^-\, y = -2x~\.
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Ex. 2. Find the equations of the asymptotes of the curve

Here ^^_ 2x + 3.v + 3
.

dx Sx + i y — 2

hence substituting in (1), and omitting the subscripts throughout the

right-hand member,
_ 2 (x2 + 3 xy + 2y^) +Zx -2y

^»~
•dx + 4y-2

Replacing x- -{- 'i xy + 2 y'^ by —3x + 2y — l from the given equar

tion, this becomes

^ ,33: + 2.y + 2 _
~^ + ^(f) + ^,

^" 3a: + 4^-2 3+4m
y

Next, to find the limit of - as y = oo, a: = oo, observe that the terms

3x,2y,l are infinities of a lower order (1 is an infinite of order 0) than

a:^, xy, y"^; hence, for large values of x and y, the terms of the second

degree would have most effect in fixing the form of the curve ; and in

the limit, when z = co and y = co, the smaller terms can be neglected.

Then the equation becomes

x2+3a;y + 2y2 = o,

(x + 2yX^ + y)=0,

(^l)(^0=«-

Hence, on one branch ^ = , and on the other, ^^ — l,
X 2 x

Using these limiting values for U. in the values of
y^^,

y^-
3 + 4(-i) - *'

^"""^ ^«- 34-4(-l) -^'

on the respective branches.

Similarly for the ar-intercept, after reduction,

- 3x + 2v -2
2x + 3^ + 3

(1)42 + 3
r*

= 5, "when - = — 1 ; and = - 8, when ^ = - =.
X X 2
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The equations of the asymptotes are therefore

1 + 1=1, and -^ + -i^ = l,

Except in special cases this method is usually too compli-

cated to be of practical use in determining the equations of

the asymptotes of a given curve. There are three other

principal methods, of which at least one will always suffice

to determine the asymptotes of curves whose equations

involve only algebraic functions. These may be called the

methods of inspection, of substitution, and of expansion.

130. Method of inspection. Infinite ordinates, asymptotes

parallel to axes.

When an algebraic equation in two coordinates x and y is

rationalized, cleared of fractions, and arranged according to

powers of one of the coordinates, say y^ it takes the form

ayn + (hx + c)y^-^ + {dx^ + ex +/)?/"-2 + - + u^-iy + i^„ = 0,

in which UJ^ is a polynomial of the degree n in terms of the

other coordinate x.

When any value is given to x^ the equation gives n values

toy.

Let it be required to find for what value of x the corre-

sponding ordinate y has an infinite value.

Suppose at first that the term in y^ is present ; in other

words, that the coefficient a is not zero. Then when any

finite value is given to x, all of the n values of y are finite,

and there are thus no infinite ordinates for finite values of

the abscissa.

Next suppose that a is zero, and 6, c not zero. In this

case one value of y is infinite for every finite value of ar, and
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thus one branch of the curve lies entirely at infinity. It is

shown in projective geometry that this branch always has

the form of a straight line. In this work no account will be

taken of such branches, and the wording of the theorems

will in no case refer to them.

There is one particular value of x that gives one additional

infinite value to y^ namely, the value x = — -\ for this makes

hx -\- c (the coefficient of the highest power of ^) zero, and

hence from the theory of equations one corresponding value

of y must be infinite; and this value is finite when a; ^ — -•

The equation of the infinite ordinate is 52; + c = 0.

Again, if not only a, but also h and c, are zero, there are

two values of x that make y infinite ; namely, those values

of X that make dx^ -\- ex -{-f= 0, and the equations of the

infinite ordinates are found by factoring this last equation

;

and so on.

Similarly, by arranging the equation of the curve accord-

ing to powers of a;, it is easy to find what values of y give an

infinite value to x,

Ex. 3. In the curve

2 ars + x^y + xy^ = x^ - y^ - 5,

find the equation of the infinite ordinate, and determine the finite point

in which this line meets the curve.

This is a cubic equation in which the coefiicient of y^ is zero.

Arranged in powers of y it is

y2(ar + 1) + ijx"^ + (2x^-x^ + 5) =0.

When a: = — 1, the equation for y becomes

. 2,2 + y + 2 = 0,

the two roots of which are y z= oo, y = — 2; hence the equation of the

infinite ordinate is a: + 1 = 0. The infinite ordinate meets the curve

again in the finite point (—1, — 2).

Since the term in x^ is present, there are no infinite values of x for

finite values of y.
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Ex. 4. In the curve

xhf + 5xy2 + 2a;2 = Sar^y + 6,

find what values of x make y infinite and what values of y make x
infinite.

131. Infinite ordinates are asymptotes. Applying to the

general equation of the last article the method of Art. 129,

the slope of the tangent at (x^ y) is -^dy

wa^"-^+(7i- 1) (62;+ c)z/'*-2+(7i- 2) (^2^+ e2;+/)2/«-3+ ...

Now, the firat condition that y may become infinite for a

finite value of a;, is a = ; but when a is zero, x finite, and y
infinite, the numerator is an infinite of higher order than

the denominator, hence -^=00, when x = — - and y = Qc.
ax h

Therefore the inclination of the tangent approaches nearer

and nearer to 90°, and the tangent approaches to coincidence

with the ordinate through the point x = —\; and thus this

line is an asymptote parallel to the «/-axis.

Similarly, if the value y = k gives an infinite value to a;,

then the line ^ = ^ is an asymptote parallel to the a;-axis.

Thus, to determine all the asymptotes parallel to the

y-axis, equate to zero the coefficient of the highest power of

?/, if it be not a constant. If this equation be of the first

degree, it represents an asymptote parallel to the ?/-axis. If

it be of higher degree, it may be resolved into first degree

equations, each of which represents such an asymptote.

Similarly, to determine all the asymptotes parallel to the

cc-axis, equate to zero the coefficient of the highest power of

a;, if it be not a constant.
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Ex. 5. In the curve a^x = y (x — a)\ the line y = is an asymptote

coincident with the a;-axis, and the line a: = a is an asymptote parallel to

the y-axis.

Fig. 40.

Ex. 6. Find the asymptotes of the curve x'^ (y — a) + xy^ = a*.

132. Method of substitution. Oblique asymptotes. The

asymptotes that are not parallel to either axis can be found

by the method of substitution, which is applicable to all

algebraic curves, and is of especial value when the equation

is given in the implicit form

fix, y) = 0. (1)

Consider the straight line

y=mx-\-h, (2)

and let it be required to determine m and h so that this line

shall be an asymptote to the curve /(a;, ?/) = 0.

Since an asymptote is the limiting position of a line that

meets the curve in two points that tend to coincide at in-

finity, then, by making (1) and (2) simultaneous, the result-

ing equation in x^

f(x, mx-\-J)) = 0,

is to have two of its roots infinite. This requires that the

coefficients of the two highest powers of x shall vanish.

DIFF. CALC. 16
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These coefficients, equated to zero, furnish two equations,

from which the required values of m and b can be deter-

mined ; and these values, substituted in (2), will give the

equation of an asymptote.

Ex. 7. Find the asymptotes to the curve y^ = x^(2 a — x).

In the first place, there are evidently no asymptotes parallel to either

of the coordinate axes. To determine the obliqae asymptotes, make the

equation of the curve simultaneous with y = mx + b, and eliminate y,

then
(mx -f by = x'^(2a — x),

or, arranged in pov^'ers of x,

(1 + m3) x^ + (3 7«2& _ 2 a) a:2 + 3 b^mx + b^ = 0,

7n8 + 1 = and 3m^-2a = 0,

2a

Let

then m = —1, b =

hence y
3

is the equation of an asymptote.

The third intersection of this line with the given cubic is found frouj

the equation 3 mb'^x + ft^ = o.
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whence

. ASYMPTOTES

9

229

Tliis is the only oblique asymptote, as the other roots of the equation

for m are imaginary.

Ex. 8. Find the asymptotes to the curve yia^ + z^) _ ^2^^ _ j.),

F

Fig. 42.

Here the line y = is a horizontal asymptote by Art. 130. To find

the oblique asymptotes, put y = mx \-h^

then (riix + h) (a^ + x^) = a\a - a:)

;

i.e., mx^-\- 6x2 ^ (^^^ + a^) x + {a% - a^) = 0,

hence m = 0, 6 = 0, for an asymptote.

Thus the only asymptote is the line y = 0, already found.

133. Number of asymptotes. The illustrations of the last

article show that if all the terms be present in the general

equation of an nth degree curve, then the equation for

determining m is of the wth degree, and there are accordingly

n values of m, real or imaginary. The equation for finding

h is usually of the first degree, but for certain curves, when

y has been replaced by mx + 5, one or more values of ?w, say

Wj, may cause the coefficient of x^ and x^~^ both to vanish,

irrespective of h. In such cases any line whose equation is

of the form y = m^x -\- c will satisfy the definition of an

asymptote, independent of c ; but by equating the coefficient

of x^~'^ to zero, two values of h can be found such that the

resulting lines have three points at infinity in common with

the curve. These two lines are parallel ; and it will be seen
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that in each case in which this happens the equation defining

m has a double root, so that the total number of asymptotes

is not increased. Hence the total number of asymptotes,

real and imaginary, is in general equal to the degree of the

equation of the curve.

It is to be observed, however, that in special cases (i.e.^

for certain special values of the given coefficients) two or

more of these lines may coincide, and moreover that some of

these n "tangents at infinity" may be situated entirely at

infinity and thus be improperly called asymptotes.

Since the imaginary values of m occur in pairs, it is evident

that a curve of odd degree has an odd number of real asymp-

totes ; and that a curve of even degree has either no real

asymptotes or an even number. Thus, a cubic curve has

either one real asymptote or three ; a conic has either two

real asymptotes or none.

134. Method of expansion. Explicit functions. Although

the two foregoing methods are in all cases sufficient to find

the asymptotes of algebraic curves; yet in certain special

cases the oblique asymptotes are most conveniently found

by the method of expansion in descending powers. It is

based on the following principle : a straight line will be an

asymptote to a curve when the difference between the ordi-

nates of the curve and of the line, corresponding to a com-

mon abscissa, approaches zero as a limit as the abscissa

becomes larger and larger.

It will appear from the process of applying this principle

that a line answering the condition just stated will also

satisfy the original definition of an asymptote.

Suppose that the equation of the given curve can be solved

for y in the form of a descending series of powers of x^
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beginning with the first power, and let the equation

then be

The line whose equation is

y = a^x + a^ (2)

is an asymptote to the curve represented by (1) ; for the

difference between the ordinate of the curve and line, corre-

sponding to the same abscissa x^ is

which approaches zero when x = cc.

It is also evident that the line (2) satisfies the original

definition of an asymptote ; for, from (1), the slope of the

tangent at the point whose abscissa is a;, is

dx ^ x^ ^

and the intercept made by the tangent on the y-axis is

diJ , 2«„
,

hence when x = cc, the slope approaches the limit a^, and

the intercept = a^ ; thus the equation of the asymptote is

- i/ = aQX-{- aj.

Ex. 9. Find the asymptotes of the curve

The line a: = 1 is an asymptote parallel to the ?/-axis.

To obtain the oblique asymptotes, write the equation in the form

77711=—r^v-i)
'
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Hence the two oblique asymptotes are

Fig. 43.

31
The sign of the term — shows that when x = -{ cc, the curve is above

the first asymptote, and below the second, as in figure ; and that when
zr = — CO, the curve is below the first asymptote, and above the second.
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The principal value of the method of expansion is that

it exhibits the manner in which each infinite branch ap-

proaches its asymptote.

Ex. 10. Find the asymptotes of the curve

.^ (x-i)(2-xy_
^ x-3

Here

Fig. 44.

Hence the oblique asymptotes are

y = ±{x-\y
The same method may be applied to cases in which x is an explicit

function of y.
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Ex. 11. Find the asymptotes of

Here ^. = 3,2(1 +?)'(!+ J_),

a: = ±(, + 2+gL...).

Hence the asymptotes are x = ±{y + 2). The next term — shows that
2 y

when y = -\- ao, the curve is to the right of the first asymptote, and to

Fig. 45.

the left of the second ; and vice versa when y = — co. The form of i;he

equation shows that the curve has a horizontal asymptote y = 0.

135. Method of expansion. Implicit functions. It was

shown in Art. 132 that the direction of each oblique asymp-

tote is determined by equating each factor of the terms
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of highest degree, in the equation of the curve, separately

to zero. The subsequent procedure will be shown by an

example.

Ex. 1. Determine the asymptotes to the curve

and the manner in which the corresponding branch of the curve ap-

proaches each.

The terms of highest degree are y^ — x*, and this expression has but

two real linear factors, hence the curve cannot have more than two real

asymptotes ; and these are parallel to the lines y ± x = 0. To find the

asymptote parallel to y — x = 0, arrange the equation of the curve thus

:

X x^

When y, x becomes infinite, - = 1 ; hence

&2

(1)

2a- +
lirn X x'^ _ ^ ^ _ *•

a; = CO T' v^\ / V , ., \
~ ~4 ~2* (2)

and the equation of the asymptote is

y = ^ + |- (3)

To obtain the next term in the equation of the curve, use (3) as a

first approximation, which gives

^ = 1 +—, correct as far as the order -»

X 2 X X

^= fl + —V=1 + -» to the same order; (4)
x^ \ 2xJ X
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These values substituted in (1) give as a second approximation

Hence the curve approaches the lower side of the asymptote on the

right, and the upper side on the left.

Similarly the equation of the branch approaching the direction

y + X = will be found to have the successive approximations

and thus on the right the curve approaches the upper side of the asymp-

tote, and on the left, the lower side.

If the term in - should happen to disappear from the result, a third
X

^
approximation may be obtained by keeping the terms of order — in the

equations that correspond to (1), (4), (5), (6).

Ex.2.y^-x^y-{-2y^-hiy + x = 0.

Ex. 3. x^ + 2x^y -xy^-2y^ + 4:y^-{-2xy + y = h

Ex. 4. y^ = x^ -\- a^x.

136. Curvilinear asymptotes. When two curves are so

situated that the difference between their ordinates corre-

sponding to the same abscissa approaches zero as a limit

when the common abscissa is made larger and larger, then

each curve is said to be an asymptote of the other. This

definition will also apply if the words "ordinate" and

''abscissa" be interchanged.

^.g.^ suppose that the equation of a given curve can be

brought to the form

1/ = aa^ + hx + c + --\'-^-\-'^+ '",

then it follows from the definition that the curve

y = ax^ + bx -\- c
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is a second degree asymptote to the given curve ; and

y = aa^ + bx -{- c
-\—

,

X

i.e., xy = aa^ + ba^ + ex -\- d

is a third degree asymptote, and so on.

Ex. Find the second and third degi-ee asymptotes to the curves of

examples 8-11, Arts. 132-134.

137. Examples of asymptotes of transcendental curves.

1. Consider the curve

y = logx.

Here, when

x=0,

^ = - 00,

and -^ = 00 ;

ax

hence the line re = is an asymp-

tote, by Art. 131.

2. The exponential curve y = e^. In this case, when

a; = — <x;, 7y = 0, -^ = 0. Hence ?/ = is an asymptote.
CiX

Pig. 46.

Fig. 47.
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3. Find the asymptotes to the curve 1 -\- ^ = e^.

When X approaches zero from the positive side, ?/ = -f- oo,

and -~==
ax

tive side, x = 0, and

4- GO ; but when x approaches zero from the nega-

-^ — 0. Hence the line x = is an
dx

Fig. 48.

asymptote at y = + Qo on the positive side of the ^-axis.

Again, when x = ± cc, y =0 \ hence the line y = is an

asymptote both at a; = + oo and — oo.

4. The probabil-

ity curve,

y = e-^.

5. The curve

-1
y2 _

o2x

Fig. 49.

^

1

Y

^ (^ ^^

i
Fig. 50.
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EXERCISES

Find the asymptotes of the following curves

:

1. (x + a)tf = (y.+ h)x^. 8. (x -2 a)y'^ = x^ - a^

2. xY-\-ax(x-\-yy-2aY-a^=0. 9. y^ = x\2a-x).

3. a:V-(^'-2/')'-^2/'-l = 0. lo. y(a^ + x^)= a\a - x).

5. x%x-yy-aXx^ + y^)=0. ^^ (x^ + a^)x^ =(a^ - x^)y^,

2 a - a; 15. </(a: - yY = y(x - y) + 2.
7. y2 =

138. Asymptotes in polar coordinates. When a curve

defined by an equation in polar coordinates has an asymptote,

this line must be paral-

lel to the radius vector

to the point at infinity

on the curve.

In Fig. 51, consider

the curve KP'P^ hav-

ing the asymptote PT.

The radius vector to

the point at infinity

must be parallel to the

asymptote, for these

two lines must inter-

sect at infinity ; and, moreover, the asymptote, according to

the definition in Art, 128, must pass within a finite distance

of this radius vector^

The polar subtangent OM, being by definition perpendicu-

lar to the radius vector OP, will, when P passes to infinity,

become a common perpendicular to the radius vector OP

Fig, 51.
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and to the asymptote MP j hence the measure of the com-

mon perpendicular is

lim /o2^\P^^V dp)'

139. Determination of asymptotes to polar curves. To de-

termine whether a given curve has asymptotes, first find for

what values of 6^ the vector p becomes infinite ; then substi-

tute each of these values of 6 in the expression for the polar

subtangent. If the result of any such substitution is finite,

there is a corresponding asymptote.

To construct the asymptote, look along the direction of

the infinite radius vector from the pole, and turn through

a right angle, to the right if V"^ p^—- be positive, and to the

left if it be negative (Art. 120). Measure a distance from

the pole in this perpendicular direction equal to v" p^—

,

and through its extremity draw a line parallel to the infinite

radius vector ; this line will be the required asymptote.

Circular asymptotes. In some cases it may happen that when

6 is made larger and larger without limit, the value of p may
approach a definite limit a; thus Q^]^^p = cl- The circle

whose equation is p = a is then called an asymptotic circle.

E.g. The curve p = "^ ^^^
has an asymptotic circle p = 1 : the

u + cos u
curve being exterior to the circle from the middle of the first quarter to

the middle of the third quarter, and interior for the remainder of the

circle ; it approaches nearer to the circle with every revolution of 0.

Ex. 1. Find the rectilinear asymptotes to the curve p = ——-.

When ^ = 0, p = a ; but when = mr, n being any positive or nega-

tive integer, p becomes infinite.

Smce ^^ a(sin^-^cosg)^
die sin2 e

hence p^^= «^
dp sin $ - $ cos $



138-139.] ASYMPTOTES 241

When 6 = rnr, this expression becomes amr or — anir, according as n

is odd or even, and may therefore be written in the form ( — 1)"~^ ainr-

There are thus an infinite number of asymptotes, all parallel to the

initial line, and situated at intervals air from each other.

When n is positive, the asymptotes are above the initial line ; when n

is negative, they are below it. There are no circular asymptotes.

Fig. 52.

In many problems it shortens the work to substitute -

for p in the equation of the curve, and then to find what

values of 6 will make u vanish. The expression p^—- for
dp

fjfi

the length of the polar subtangent then becomes —— ; and

hence ^ J^q (
~ T~ )'

^^^^^ ^^^ ^^J ^^ *^® values of 6 just found,

measures the distance of the corresponding asymptote from

the pole.

Ex. 2. Find the asymptotes to the curve

p sin 4 ^ = a sin 3 B.

Put p = - , then
u

sin 4 ^ = aw sin 3 6,



242 DIFFERENTIAL CALCULUS [Ch. XIV. 139.

and u = 0, when 6 = ±5, ±^, ±^, ±~ -".
4 2 4 4

By differentiation, 4 cos 4 ^ = a-^ sin 3 ^ + 3 aw cos 3 6,
du

du

dO

This expression becomes

corresponding asymptote is

4 cos 4 ^ + 3 au cos 3 6

a sin 3^

4V2
when 6 = — \ hence the distance to the

a 4

To construct the asymptote, look
4V2

from the pole along the direction of

45°, measure a distance
4V2

units to

Fig. 53.

the right, perpendicular to this radius

vector ; then draw a line through the

end of the perpendicular, parallel to

the infinite radius vector (Fig 53).

The student should determine the

number and position of the remaining

asymptotes.

EXERCISES

Find and draw the asymptotes to the following curves

:

1. The reciprocal spiral p6 = a.

2. p cos 6 = a cos 2 6. 4. p cos 2 ^ = a sin 3 ^.

3. p = bsecae. 5. p(e« - 1) = a(e» + 1).

6. Show that the curve p = —;: has no asymptote.
1 — cos ^

7. Show that the initial line is an asymptote to two branches of the

curve p2 sin = a^ cos 2 0.

8. Find the rectilinear and circular asymptotes of the curve

0^2
P =

d-^-1

9. Which of the curves in 1-7 have circular asymptotes?



CHAPTER XV

DIRECTION OF BENDING. POINTS OF INFLEXION

140. Concavity upward and downward. A curve is said

to be concave downtvard in the vicinity of a point P when,

for a finite distance on each side of P, the curve is situated

Fig. 54.

below the tangent drawn at that point, as in the arcs AD^
FH. It is concave upward when the curve lies above the

tangent, as in the arcs DF, HK.
It is evident, by drawing successive tangents to the curve,

as in the figure, that if the point of contact advances to the

right, the tangent swings in the positive direction of rotation

when the concavity is upward, and in the negative direction

when tlie concavity is downward. Hence upward concavity

may be called a positive bending of the curve, and down-

ward concavity, negative bending.

A point at which the direction of bending changes con-

tinuously from either sign to its opposite, is called a foint

DIFF. CALC. — 17 243
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of inflexion^ and the tangent at such a point is called a

stationary tangent.

The points of the curve that are situated just before and

just after the point of inflexion are thus on opposite sides of

the stationary tangent, and hence the tangent crosses the

curve, as at i), jP, H.

141. Algebraic test for positive and negative bending. Let

the inclination of the tangent line, measured from the right-

hand end of the rc-axis toward the forward (right-hand) end

of the tangent, be denoted as usual by c^, then
<f>

is an in-

creasing or decreasing function of the abscissa according as

the bending is positive or negative ; for instance, in the arc

AZ>, the angle (j> diminishes from + — through zero to — —

;

2 4
in the arc i>jP, <^ increases from —- through zero to

q"; in the arc FH^ </> decreases from -\--~ through zero

to — — ; and in the arc HK^ <j> increases from — — through

zero to +—•
4

At a point of inflexion
<f)

has evidently a turning value

which is a maximum or minimum, according as the concavity

changes from upward to downward, or conversely.

Thus in Fig. 54, <^ is a maximum at F, and a minimum at

D and at IT.

Instead of recording the variation of the inclination <^,

it is generally convenient to consider the variation of the

slope tan </>, which is easily expressed as a function of x by

the equation

tan(^ = ^.
dx

Since tan
(f)

is always an increasing function of (/>, it follows

that, according as the concavity is upward or downward, the
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slope function f is an increasing or a decreasing function
ax

oi X, and hence that its 2;-derivative is positive or negative.

Thus the bending of the curve is in the positive or nega-

tive direction of rotation, according as the function —4 is
. . . dar

positive or negative.

At a point of inflexion the slope ;^ is a maximum or

minimum ; and its derivative —^ changes sign from positive
dor

to negative or from negative to positive. This latter con-

dition is evidently both necessary and sufficient in order that

the point (x^ y) may be a point of inflexion on the given

curve.

Hence, the coordinates of the points of inflexion on the

curve

may be found by solving the equations

f'Cx)=0, /'(a:) =00,

and then testing whether f"(x) changes its sign as x passes

through the critical values thus obtained. To any critical

value a that satisfies the test, corresponds the point of

inflexion («,/(«))•

Ex. 1. For the curve

find the points of inflexion, and show the mode of variation of the slope

and of the ordinate.

Here ^-^ = 4 x (a:2 - 1),
dx

g = 4(3.^-i;.

hence the critical values for inflexions are x = = — .58 approxi*
^/3
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mately ; and x = -\- .58. It will be seen that as x increases through — .58,

the second derivative changes sign from positive to negative, hence there

is an inflexion at which the concavity changes from upward to down-

ward. Similarly, at a; = + .58 the concavity changes from downward to

upward. The following numerical table will help to show the mode of

variation of the ordinate and of the slope, and the direction of bending.

As X increases from — oo to — .58, the

bending is positive, and the slope continually

increases from — go through zero to a maxi-

mum value, 1.5, which is the slope of the

stationary tangent drawn at the point

(-.58, .44).

As X continues to increase from — .58 to

+.58, the bending is negative, and the slope

decreases from +1.5 through zero to a mini-

mum value, — 1.5, which is the slope of

the stationary tangent drawn at the point

(+.58, .44).

Finally, as x increases from + .58 to + co , the bending is positive,

and the slope increases from the

value — 1.5 through zero to + oo.

The values x = —\, 0, +1, at

which the slope passes through zero,

correspond to turning values of the

ordinate.

Ex. 2. Examine for inflexions

the curve
x -\- ^ = {y - 2)3. Fig. 55.

X y
dy

dx

d^y

dx^

— 00 + 00 — 00 +
-2 + 25 -24 +
-1 +
-.58 + .44 + 1.5

1 —
+ .58 + .44 -1.5

1 +
+ Q0 + 00 + 00 +

Fig. 56.

In this case

y = 2 + (x + 4)i,

dx^
(x + 4)-|.

Hence, at the point (-4, 2), ^
and

d^
dx'^

are infinite. When a:<— 4,

d^y
, ^ is positive, and when x>-i, ^ is negative.
dx^ dx^

^
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Thus there is a point of inflexion at ( — 4, 2), at which the slope is

infinite, and the bending changes from the positive to the negative

direction.

Y
Ex. 3. Consider the curve y — 3^.

dx
/^x\ ^=12x2.

dx^

d^
At (0, 0), —^ is zero, but the curve

has no inflexion, for ^—^ never changes

sign (Fig. 57). Fig. 57.

142 Analytical proof of the test for the direction of bend-

ing. Let the equation of a curve be y = f(x), and let

P, (a;^, ^1), be a point upon it ; then the equation of the

tangent at P is

When X changes from x-^ to x^ + ^, let the ordinate of the

tangent change from y-^ to y',

and that of the curve from y^

to y* ; then it is proposed to

determine the sign of the dif-

ference of ordinates y^' — y' cor-

responding to the same abscissa

x^-{- h.

By Taylor's theorem,

and from the above equation of the tangent,

hence v' = yi + ¥' C^i) =fC^D + ¥'(^1),

and it follows that

l/"-2/'=jf"C^i + 0JO-

(X^h) Xy (a:,+/i)

Fig. 58.
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As h is made smaller and smaller, /^'(.t^ + 6h) will have

the same sign asf'Qcj); but the factor P is always positive,

hence when/''(a:j) is positive, i/" — y^ is positive, and thus

the curve is above the tangent, at both sides of the point of

contact, that is, the concavity is upward. Similarly when

f"(x-^ is negative, the concavity is downward.

This agrees with the former result.

143. Concavity and convexity towards the axis. A curve

is said to be convex or concave toward a line, in the vicinity

of a given point on the curve, according as the tangent at

the point does or does not lie between the curve and the

line, for a finite distance on each side of the point of contact.

Fio. 59 a. Fig. 59 h.

First, let the curve be convex toward the a;-axis, as in the

left-hand figure ; then if y is positive, the bending is positive

and —^ is positive ; but if y is negative, the bending is neg-

ative and —^ is negative. Thus in either case the product

y—^ is positive.

Next, let the curve be concave toward the a:-axis, as in

the right-hand figure ; then if y is positive, the bending is

negative and ^-^ is negative ; but if y is negative, the bend-
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ing is positive and -—^ is positive. Thus in either case the

product y—^ is negative. Hence :

In the vicinity of a given point (x, y) the curve is convex or

ncave to t

or negative.

concave to the x-axis, according as the product y—^ is positive
CLX'

EXERCISES

1. Show that the curve y = has a point of inflexion at the

origin, and also when x = ± aV3.

2. In the curve y (a* — h^) = x(x — a)* — xh\ there is a point of

inflexion at x =— • Examine the points at which x = a.
5

3. Find the points of inflexion of the curve

4. Show that the curve y (x^ + a^) = a^(a — ar) has three points of

inflexion on the same straight line.

5. Find the points of inflexion on the curve y^(x — 1) = x^.

6. Show that the curve Qx(l — x)y = 1 -\- '^x has one point of

inflexion, and three asymptotes.

7. Show why a conic section cannot have a point of inflexion.

8. Draw the part of the curve a^y = ax^ + 2 a^ near its point of

inflexion.

144. Concavity and convexity ; polar coordinates. A curve

referred to polar coordinates is said to be concave or convex

to the pole, at a given point on the curve, according as the

curve in the neighborhood of that point does or does not lie

between the tangent and the pole.

Let p be the perpendicular from the pole to the tangent

at the point (/o, ^). Then when the curve is concave to the

pole, p evidently increases with p, as in the arc AB^ and

diminishes wifh p, as in the arc BQ (Fig. 60 a); hence -~

is positive (Art. 20).
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Again, when the curve is convex to the pole, p increases

when p diminishes, as in the arc DU (Fig. 60 6), and p

diminishes when p increases, as in the arc UF ; hence -j-

IS negative.

Fig. 60 a. Fig. 60 h.

Thus the curve is concave or convex to the pole at the

point (p, ^), according as -^ is positive or negative.

To express this condition in terms of (9-derivatives of /o,

use the equation P = P sin i|r,

1 1 „. 1.. . ... ir. ifdpy-^
^^^p2 p2 p\dd^

^ = ^CSc2^ = ^(l + COt2.;r) = l[l-f

1 1

dO
because tan i|r = /a--, by Art. 118.

dp

This may be simplified by putting — = t^, p = -, whence
dp _ 1 du

"

,^
=

2 •
'ja')

^iid equation (1) becomes

p' "^+(r-'de)'
(2)

Differentiation as to u gives

_2.f!2 = 2« + 2:;^.
p^ du

dp

du -p"{^+w)

du dj^u dOW Wdu
dhC'

(3)
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but ^ = ^.^ = _^.1 = _^.^2
dp du dp du p'^ du '

hence, from (3), -j- =pV I u + -jm]'

Since p is always taken positively, hence

The curve is concave or convex to the pole at the point (p, 6)^

dhi ...
according a% u -\- —— is positive or negative,

do^

EXERCISES

Trace the following curves near their points of inflexion :

1. p = -4^ (find its asymptotes). 2. p = -^'^. 3. p = W^.
2 6 — 1 u — 1

4. In the curve defined by the two equations

a: = a(l — cos^), y = aQi<f> + sm<f>),

show that there is an inflexion at the point wliere cos <fi

n

5. Locate the inflexions on the curve p =— • (See Fig. 52.)
sin 6

6. Find the coordinates of the inflexion in Fig. 40.

7. In Fig. 41, show that the inflexional tangent is vertical.

8. Show that there are three real inflexions in Fig. 42.

9. How many inflexions are there in Figs. 44, 45?

10. In the logarithmic curve, the curvature is always negative ; and

in the exponential curve it is always positive. (Figs. 46, 47.)

11. Locate the points of inflexion in Figs. 48, 49, 50.
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CONTACT AND CURVATURE

145. Order of contact. The points of intersection of the

two curves

are found by making the two equations simultaneous ; that

is, by finding those values of x for which

<f>(x) = 'f(x).

Suppose x=a is one value that satisfies this equation, then

the point x= a, y = ^(cC) — i|r(a) is common to the curves.

If, moreover, the two curves have the same tangent at this

point, they are said to touch each other, or to have contact

of the first order with each other. The values of y and

of -^ are thus the same for both curves at the point in
ax

question, and this requires that

If, in addition, the values of —^ be the same for each

curve at the point, then

<^"(a) = t"(a),

and the curves are said to have a contact of the second

order with each other at the point for which x = a.

If
<l>
(a) = yjr (a), and all the derivatives up to the nth

be finite and equal at x = a^ the curves are said to have

contact of the nth order. This is seen to require w + 1 con-
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ditions ; hence if the equation of the curve ^ = <t>(x) be

given, and if the equation of a second curve be written in

the form y = '^(x)^ in which '^(x) proceeds in powers of x

with undetermined coefficients, then n -f 1 of these coeffi-

cients could be determined by requiring the second curve to

have contact of the wth order with the given curve at a

given point.

146. Number of conditions implied by contact. A straight

line has two arbitrary constants, which can be determined by

two conditions ; thus, a straight line can be drawn which

touches a given curve at any specified point.

Usually no such line can be drawn having contact of

order higher than the first with a given curve ; but there

are certain points at which this can be done. For instance.

if the equation of a line be written y = mx + 5, then

? = '»' f^^ = 0:
ax dx^

hence, through any arbitrary point x = a on a given curve

y=(j)(x)^ a line can be drawn which has contact of the first

order with the curve, but which has not in general contact

of the second order ; for the two conditions for first order

contact are

ma +h= <^(a),

m = ^'(a),

which are just sufficient to determine m and 5; and the

additional condition for second-order contact is = <f)"(a),

which is satisfied whenever the point x = a is a point of

inflexion on the given curve ?/ = <t)(x). Thus the tangent

at a point of inflexion on a curve has contact of the second

order with the curve.
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The equation of a circle has three independent constants.

It is therefore possible to determine a circle having contact

of the second order with a given curve at any assigned

point.

The equation of a parabola has four constants, hence a

parabola can be found which has contact of the third order

with the given curve at any point.

The general equation of a central conic has five inde-

pendent constants, hence a conic can be found which has

contact of the fourth order with a given, curve at any given

point.

As in the case of the tangent line, special points may be

found for which these curves have contact of higher order.

147. Contact of odd and of even order.

Theorem. At a point where two curves have contact of

an odd order they do not cross each other ; but they do

cross where they have contact of an even order.

For, let the curves y= <^(^), y = '^(a^) have contact of

the nih. order at the point whose abscissa is a ; and let y^^

y^ be the ordinates of these curves at the point whose

abscissa is a -\-li\ then

^1 = <^ (a + A), y^=yjr(a + A),

and by Taylor's theorem

2,i=</,(a)+,^'(a).A+*^.A2+...

n I (?i + 1)

!

y, = ,/rCa) + ^'(a) . ^ +±^ . A2 + ...
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Since by hypothesis the two curves have contact of the

wth order at the point whose abscissa is a,

hence </> (a) = i/r (a), c^'(a)= ^'(a), ..., <^"(«)= VW^
n + l

and yi
-

1/2 = j^—-^ [<^»+'(« + eh}- r*X<^ + ^1^)];

but this expression, when h is sufficiently diminished, has

the same sign as

hence, if n be odd, t/^ — y^ does not change sign when h is

changed into — A, and thus the two curves do not cross each

other at the common point. On the other hand, if n be

even, y^ — y^ changes sign with A ; and therefore when the

contact is of even order the curves cross each other at

their common point.

For example, the tangent line usually lies entirely on one

side of the curve, but at a point of inflexion the tangent

crosses the curve.

Again, the circle of second-order contact crosses the

curve except at the special points, noted later, in which the

circle has contact of the third order.

148. Circle of curvature. The circle that has contact of

the closest {i.e.^ second) order Avith a given curve at a speci-

fied point is called the osculating circle or circle of curvature

of the curve at the given point. The radius of this circle is

called the radius of curvature, and its center is called the

center of curvature at the assigned point.

149. Length of radius of curvature; coordinates of center

of curvature.

Let the equation of a circle be

(X-«)2+(F-^)2 = iJ2, (1)
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in which R is the radius, and a, fi are the coordinates of the

center, the current coordinates being denoted by X, y,

to distinguish them from the coordinates of a point on the

given curve.

It is required to determine i2, a, /3, such that this circle

may have contact of the second order with the given curve

at the point (x, y).

From (1), by successive differentiation,

(X-«) + (F-/9)||=0,

\dX) ^ '^^ dx-^

(2)

If the circle (1) has contact of the second order at the

point (a:, y) with the given curve, then the common abscissa

X = X makes

dY^dy d?Y ^d?y,

dX dx dX"^ dx^'

hence, from (2), (rr - a) + (v - /8)^ = 0,
dx

whence

1 +
y-^ = m tb-m]

dx^

X — a

d-j?

(3)

(4)

(S)

and finally, by substitution in (1),

, l'-(l)T

dx^

(6)
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If, for shortness, m, n be written for -J^, —^, then the
ax dx^

coordinates of the center and the radius of the circle of

curvature are given by the equations

n n n

150. Second method. The osculating circle is sometimes

defined as the limiting position of a circle passing through

three points on the curve when two of these points move

towards the third as a limit.

It is proposed to find the equation of this circle, and thus

to show that the two definitions lead to the same result.

Let X — h^ x^ X + hhQ the abscissas of three points on the

curve, and y — k. y. y -{- k' the corresponding ordinates, in

which k' is not in general equal to k.

Let these three points lie on the circle whose equation is

(^_a)2+(^_^)2 = ^, (1)

then (x-h-ay+{y -k- ^y = B^,

(x^h-ay^(jj + k'- ^y = i^.

Subtracting the second and third from the first,

2hi:x-a')-h^-h2k(y-0)- ^2 = 0,)

- 2h(x - a:) - ¥ - 2kXy - ^') - k'^ = 0,) ^^

whence by adding, and solving for y — ff,

27.2 + ^2 + ^-^
^ ^ 2{k-k') ^/

To find the limit of this fraction as ^ = 0, let «/ = (a:) be

the equation of the given curve, then

y — k = (ftQx — A), y -\-k' = (f>(x + A),
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whence, by Taylor's theorem,

A2y-k = <t>(x) - h<i>'(x) +^ cl>"Cx - 0,h}

7.2

t/ + k' = ct>(x') + A(^'(2;) + 1^ ct>'\x + eh),

and
P

hence, when A = 0,

k .

'i
= ct>Xx). ^^<t>'(x\

^'~^ = cl>^'(^')-

Equation (8) may now be written

lay ia'\^
1 +

therefore, by (4),

2\k &
k'-k

1+

(4)

To find (a; — a), divide the first of equations (2) by 2 A and

pass to the limit, then

x-ci^-j^iy-P)

. (^'(:r)Sl+ [c^'(:.)]2l ll'HITI
r(x)

Thus the coordinates («, /3) of the center of the osculating

circle at the point {x^ y') are the same by either definition.

The value of R is then found as before.
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151. Direction of radius of curvature. Since the given

curve and its osculating circle at a point P have the same

value of -^ at that point, it follows that they have the same
CiCC

tangent and normal at P, and hence that the radius of

curvature coincides with the normal. Again, since the

curve and its osculating circle have the same value of

at P, it follows from Art. 141, that they have the same

direction of bending at that point, and hence that the center

of curvature lies on the concave side of the given curve

(Fig. 61).

This could also be seen from the fact (Art. 150) that the

osculating circle is the limiting position of a circle passing

through three points on the curve when these points move

into coincidence.

Fig. 61. Fig. 62.

The radius of curvature is usually regarded as positive or

negative according as the bending of the curve is positive

or negative (Art. 141), that is, according as the value of

—^ is positive or negative ; hence, in the expression for i2,

the radical in the numerator is always to be given the

positive sign. The sign of R changes as the point P passes

i>lFF, CALC. 18
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through a point of inflexion on the given curve (Fig. 62).

It is evident from the figure that in this case R passes

through an infinite value ; for the circle through the points

N, P, Q approaches coincidence with the inflexion tangent

when iV and ^ approach coincidence with P; and thus the

center of this circle at the same time passes to infinity.

152. Other forms for JR,

I. Expression for B, when x and y are functions of an

independent variable t.

By Arts 21, 51,

dy

dy dt d'y

fd^y dx d^x

\df^ dt dt^ dt)

dx ~ dx

dt

dx^- m
Thenjfore the expression of Art. 149 becomes

R =
d^y dx d'^x dy

dt^ dt dt^ dt

II. Expression for i2, when the curve is defined by an

implicit equation.

Let f(x, ^)= be the equation of the curve ; then when

the value of -^, —-f are expressed in terms of
dx dx^

dx' dy' dx^' dxdy' dy^'

(Ex. 10, p. 182), the expression for H becomes

i2 =
dxj Kdtf

-07iyy J

\dyj dx^ dx dy dxdy \dx) dy'^
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III. Expression for M in polar coordinates.

If the equation of the curve be given in the form p=f(6'^^
the expression for R may be found by transforming the

equation of Art. 149, by means of the relations

The result is

p'

153. Total curvature of a given arc; average curvature.

The total curvature of an arc PQ (Fig. 63) in which the

bending is continuous^ and in one direction, is the angle

through which the tangent swings as

the point of contact moves from the

initial point P to the terminal point Q ;

or, in other words, it is the angle

between the tangents at P and Q,

measured from the forward end of the

former to that of the latter. Thus the

total curvature of a given arc is positive or negative accord-

ing as the bending is in the positive or negative direction of

rotation.

The total curvature of an arc divided by the length of the

arc is called the average curvature of the arc, or the curva-

ture for unit of length. Thus, if the length of the arc PQ
be As centimeters, and if its total curvature be A(^ radians,

then its average curvature is —^ radians per centimeter.
As

154. Measure of curvature at a given point. The measure

of the curvature of a given curve at a given point P is the
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limit which the average curvature of the arc PQ approaches

when the point Q approaches coincidence with P.

Since the average curvature of the arc P^ is —, the

measure of the curvature at the point P is

_ lim A^ _ d<f)

and may be regarded as the rate of deflection of the arc from

the tangent estimated per unit of length ; or again, as the

ratio of the angular velocity of the tangent to the linear

velocity of the point of contact.

To express k in terms of x^ y^ and their derivatives. Since

dx

then <^ = tan-i^
dx

and
ds ds \ dxj

-fftan-i'^^V?
dx\ dx) ds

d^ 1

'^*m f

therefore
ds ( ^ //77y\2 1 tHm [Art. 121

155. Curvature of an arc of a circle. In the case of a cir-

cular arc the normals are radii

;
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hence d« = r • A(f), —^ = -, (1)
As r

thus K = —
r

Thus the average curvature of all arcs of the same circle

is constant and equal to - radians per unit of length.
r

For example, in a circle of 2 feet radius the total curva-

ture of an arc of 3 feet is | = 1.5 radians, and the average

curvature is .5 radian per foot.

It also follows from (1) that in different circles, arcs of

the same length have a total curvature inversely propor-

tional to their radii.

Thus on a circumference of 1 meter radius, an arc of 5 decimeters has

a total curvature of .5 radian, and an average curvature of .1 radian per

decimeter ; but on a circumference of half a meter radius, the same length

of arc has a total curvature of 1 radian and an average curvature of .2

radian per decimeter.

156. Curvature of,osculating circle. A curve and its oscu-

lating circle atP have the same measure of curvature at that

point.

For, let /c, k' be their respective measures of curvature at

the point of contact (a;, ^) ; then from Art. 154,

K =

and from Art. 149,

!> <i

1 dx^
K' =—

R
1 + l)T

21 f

hence k = «'.
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It is on account of this property that the osculating circle

is called the circle of curvature. This is sometimes used as

the defining property of the circle of curvature. The radius

of curvature at P would then be defined as the radius of the

circle, whose measure of curvature is the same as that of the

given curve at the point P. Its value, as found from Art.

154 and Art. 155, accords with that given in Art. 149.

EXERCISES

1. Find the order of contact of the two curves

2. Find the order of contact of the parabola y^ = 4:X, and the

straight line 3y = x + 9.

3. Find the order of contact of

9y = x^- 3x^ + 27 and 9y-\-3x = 2S,

4. Find the order of contact of

y = log(x-l) and x^ - 6x + 2y + S = a,t (2, 0).

5. Show that the circle ^a; -—y+ (?/ -—)^= — and the cui-ve

y/x + "v^ = "v^ have contact of the third order at the point x = y = —

6. What must be the value of a in order that the parabola

y = X -\-l + a(x -ly
may have contact of the second order with the hyperbola xy = dx — 11

7. Find the order of contact of the parabola

(x-2ay+(y-2ay = 2xyy

and the hyperbola xy = a^.

EXERCISES ON CURVATURE

8. In the curve y = x* — 4:X^ — IS x"^, the radius of curvature at the

origin is jV

9. Show that the two radii of curvature of the curve

^
a - X

at the origin are ± a V2; and that R = ^a at (— a, 0).
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Find the radius of curvature in each of the following curves

:

10. The parabola y^ = 4 ax.

11. The ellipse — + ^ = 1.

265

12. The catenary

62

y =
I

(ec + « •).

13. The exponential curve y = ac*

14. The parabola Vx -\- Vy = 2 Vo.

15. The hypocycloid x^ -\- y^ = a*.

16. The curve y = log sec x. Catenary of uniform strength.

17. Derive the formula i, = (g)%(^)^

— = cos d> —— = — sin d> • —p = —^-j etc. I

ds ^ ds^ ^ ds E ' J

157. Direct derivation of the expressions for k and B in

polar coordinates.

Using the notation of Art. 119,

hence
(•-t)

ds ds

dd

(

dd

2ni

But tan '^ =z p
dO

dp
i/r = tan~i

dd

CI)

[Art. 124
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therefore, by differentiating as to 6 and reducing,

dd

dp\^ ^
~de^dO

-p

"<%)"
which, substituted in (1), gives

d^p

p'-pw^\w)
dp^^

d6.

[HWl
and the relation M =- then reproduces the result obtained

K
in Art. 152 by transformation of coordinates.

Wheni^=- is taken as dependent variable, the expres-

P
sion for k assumes the simpler form

u^r ,
d^u\

[«"<S)T
Since at a point of inflexion k vanishes and changes sign,

hence the condition for a point of inflexion, expressed in

dhc
polar coordinates, is that u + -j^ shall pass through zero

ad
and change its sign. See Art. 144.

EXERCISES

1. Show that the radius of curvature of the curve

p = a sin nO at (0, 0) is ^
2. Find the radius of curvature of p"^ — a"* cos mB.

Find the value of R in each of the following curves

:

3. The circle p = a sin Q.
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4. The lemniscate p^ — q2 cos 2 B.

5. The logarithmic spiral p = c*^.

6. The trisectrix p = 2 a cos 6 — a.

7. The equilateral hyperbola p^ cos 2d = a'^,

8. For any curve prove the formula

R - t Tf,n ./, - P^.

sm

EVOLUTES AND INVOLUTES

158. Definition of an evolute. When the point P moves

along the given curve, the center of curvature Q describes

another curve which is called the evolute of the first.

Let /(a;, ^) = be the equation of the given curve, then

the equation of the locus described by the point Q is found

by eliminating x and y from the three equations

dif

dxiHW\

-yS =

dx^

1 + f^)
\dxjw
dx^

and thus obtaining a relation between a, y8, the coordinates

of the center of curvature.

No general process of elimination can be given ; the

method to be adopted depends upon the form of the given

equation /(a:, ^) = 0.
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Ex. 1. Find the evolute of the parabola y^ = ^px.

Since y = 2;>H ^^ph'^, ^ = _ l^i^c-f,
dx dx^ 2

hence x — a = — pix~'i (1 + px-"^) 2p~^x^ = — 2 (z + /?),

and y - 13 = (I -\- px-^) 2p~^xi = 2 (p~lx^ + p^x^) ;

therefore a = 2p + 3x, P = — 2p'^x^,

Fig. 64.

when, by eliminating x, ^ (a — 2py = ^ {p^P)%

i.e., i(a-2py = 27pl3%

is the equation of the evolute of the parabola, in which a, /8 are current

coordinates.

Ex. 2. Find the evolute of the ellipse

(1)
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a^ h^ dx dx ahf

dy

d:^y _ &2 y~^di _-b^f b^x^\ _-b^

when:e

Therefore -B = ^—=t^ y». (2)
b*

Similarly, a = ^^=-^x^. (3)
a*

Eliminating x, y between (1), (2), (3), the equation of the locus de-

scribed by (a, (i) is

(aa)t + (b^)^ = (a2 - 52)1. (pig. 69.)

159. Properties of the evolute. The evolute has two im-

portant properties that will now be established.

I. The normal to the curve is tangent to the evolute.

The relations connecting the coordinates (a, yS) of the center

of curvature with the coordinates (x, y) of the. correspond-

ing point on the curve are, by Art. 149,

a;-«+(y-^)J=0, (1)dx

1+
(iJ-*-(^-^>3=«- (^)

From these equations a, /S may be considered functions of

X ; hence, by differentiating (1), regarding «, y8, y as func-

tions of a;,
. ,

.

.
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Subtracting (3) from (2) gives

dx dx dx '

[Ch. XVI.

(4)

whence dS
doL

dx

dy

but -^ is the slope of the tangent to the evolute at (a, p) ;

dx
and ——is the slope of the normal to the given curve at

dy
(ic, y'). Hence these lines have the same slope ; but they

pass through the same point (a, yS),

therefore they are coincident.

II. The difference between two

radii of curvature of the given curve,

touching the evolute at the points

(7i,
C^ (Fig. Qb')^ is equal to the arc

C^C^ of the evolute.

Since R is the distance between

points (x^ ^), («, )S), hence

Fig. 65.

(a;-«)2 + (y-y8)2 = i22. (5)

When the point (a;, y^ moves along the given curve, the

point (a, y8) moves along the evolute, and thus a, ^S, 72, y
are all functions of x.

Differentiation of (5) as to x gives

(.-.)(,-*).(,-»(l-D=i=« («

hence, subtracting (6) from (1),

(7)
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Again, from (1) and (4),

da dp
dx _ dy

X — a y — ^
Hence, each of these fractions is equal to

^\dxj \dxj dx

(8)

± i^. (9)
V(2;-«)2+(i/-/S)2 R

in which a is the arc of the evolute.

Next, multiplying numerator and denominator of the first

member of (8) by a; — a, and those of the second member by

y—^^ and combining new numerators and denominators, it

follows that each of the fractions in (8) is equal to

(X- «)|+(y-/3) dl3

dx

(X -«)' + (3'-/3)'

which equals
RdR
mdx

by (7) and (6).

Whence, by (9),
cUr _ dB
dx dx'

that is,

dx

therefore ± R= constant, (10)

wherein a is measured from a fixed point A on the evolute.

Now, let (7j, Cg be the centers of curvature for the points

Pj, P2 ^^ tl^® given curve ; ]et P^C^ = i?j, ^2^2 — ^2 ' ^^^

let the arcs A Cj, A 0^ be denoted by o-j, o-g ; then

o-j ± i2j = 0-3 ± i^a, by (10);
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that is,

hence,

1- 0-2 = ±(^2- ^1)5

arc C-^C^ = i^2 ~ -^1'

Thus, in figure ^Q^

(11)

P'fiv

•^9,^1 "f~ ^2^3 — -f^3^3' ^^C*

Fig. 66.

Hence, if a thread be wrapped

around the evolute, and then be

unwound, the free end of it can

be made to trace out the original

curve. From this property the

locus of the center of curvature

of a given curve is called the

evolute of that curve ; and the latter is called the involute

of the former.

When the string is unwound, each point of it describes a

different involute ; hence to the same curve correspond an

infinite number of involutes ; but a curve has but one

evolute.

Any two of these involutes intercept a constant distance

on their common normal, and are called parallel curves.

EXERCISES

Pind the coordinates of the center of curvature of the following

curves

:

1. The parabola y^ = 4 ax.

2. The semicubical parabola x^ = ay\

3. The four-cusped hypocycloid x^ + y» = a^.

4. The catenary y f ec + e c
j.

5. The equation of the equilateral hyperbola being xy = a^, prove

that

and derive the equation of the evolute.
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6. Show that the curvature of an ellipse is a ininimum at the end of

the minor axis, and that tlie osculating circle at this point has contact

of the third order with the curve.

Fio. 67.

This circle of curvature must be entirely outside the ellipse (Fig. 67)

;

for, consider two points Pj, P^ one on each side of J5, the end of the

minor axis. At these points the curvature is greater than at B^ hence

these points must be farther from the tangent at B than the circle of

curvature, which has everywhere the same curvature as at B.

7. Similarly, sliow that the curvature at A^ the end of the major

axis, is a maximum, and that the circle of curvature at A lies entirely

within the ellipse (Fig. 67).

8. Show how to sketch the circle of curvature for points between A
and B. The circle of curvature for points between A and B has three

coinciden.t points in common with the ellipse (Art. 150), hence the circle

Fig. 68.

h
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crosses the curve (Art. 147). Let K, P, L be three points on the arc, such

that K is nearest A, L nearest B. The center of curvature for P lies on

the normal to P, and on the concave side of the curve. The circle crosses

at P, lying outside of the ellipse at K (on the side towards A), and

inside the ellipse at L ; for the bending of the ellipse increases from B
to P and from P to K, while the bending (curvature) of the osculating

circle remains constant (Fig. 68).

9. Two centers of curvature lie on every normal
;
prove geometrically

that the normals to the curve are tangents to the evolute.

10. Show that the entire length of the evolute of the ellipse is

4( ]• [From equation (11) above, take R^, R<^ as the radii of

curvature at the extremities of the major and minor axes.]

11. Show that in the parabola y"^ = ^ax the length of the part of the

evolute intercepted within the parabola is 4 a (3^3 — 1).

12. Show that in

a + y8 = 3 (a; + y).

the parabola Vx + Vy = Va the relation exists,

13. If E be the center

of curvature at the vertex

A (Fig. 69), prove that

CE = ae% in which e is the

eccentricity of the ellipse;

and hence that CD, CA,

CF, CE form a geometric

series whose common ratio

is e. Show also that DA,
AF, FE form a similar

series.

14. K ^ be the center of

curvature at B, show that

the point H is without or

within the ellipse, according

as a > or < hV2, or accord-

ing as e^> or < |.

15. Show by inspection

of the figure that four real

normals can be drawn to the

ellipse from any point within

the evolute.



CHAPTER XVII

SINGULAR POINTS

160. Definition of a singular point. If the equation

/(a;, «/)=0 be represented by a curve, the derivative -^,

when it has a determinate value, expresses the slope of the

tangent at the point (x, y). There may be certain points on

the curve, however, at which the expression for the deriva-

tive assumes an illusory or indeterminate form ; and, in

consequence, any line whatever drawn through such a point

may be regarded as a tangent at the point. Such values of

x^ y are called singular values^ and the corresponding points

on the curve are called singular points.

161. Determination of singular points of algebraic curves.

When the equation of the curve is rationalized and cleared

of fractions, let it take the form f(x<, y')= 0.

This gives, by differentiation with regard to x, as in

Art. 96,

dx dy dx

du dx
whence 55= -^ ^^^

dy
dy

k

In order that -^ may become illusory, it is therefore
dx

necessary that -^ = 0, e^ = 0. (2)
dx dy

DIFF. CALC. — 19 275
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Thus to determine whether a given curve / (a:, ?/) = has

singular points, put -^ and -^ each equal to zero and solve
dx by

these equations for x and y.

If any pair of values of x and y^ so found, satisfy the

equation/ (2:, y) = 0, the point thus determined is a singular

point on the curve.

To determine the appearance of the curve in the vicinity

of a singular point, (a^j, y^ evaluate the indeterminate form

dy _ dx _0

by finding the limit approached continuously by the slope of

the tangent when x = x^^ y = y^,

Am
thus

dy_ dxKdxJ

dx d^fdf

dx\dy

By
^

d'^f dy

_ __
bx^ dxd,,dx rp^^^^

72, 96." _^^^J_dy_ '

dxdy 5z/2 dx

This equation cleared of fractions gives, to determine the

slope at (a?!, y^), the quadratic

bVfdy\\ B^f (dy\ BJ_

This quadratic equation has in general two roots. The

only exception is when simultaneously, at the point in

question,

^-0 -^-Q ^-0 (4)

%
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in which case -^ is still indeterminate in form, and must be
ax

evaluated as before. The result of the next evaluation is a

cubic in ~, which gives three values of the slope, unless all

the third partial derivatives vanish simultaneously at the

point.

The geometric interpretation of the two roots of equation

(3) will now be given, and similar principles will apply

when the quadratic is replaced by an equation of higher

degree.

The two roots uf (3) are real and distinct, real and coin-

cident, or imaginary, according as

\dxdyj dx^ by^

is positive, zero, or negative. These three cases will be con-

sidered separately.

162. Multiple points. First let H be positive. Then at

the point (x^ y) for which -^ = 0, -^ = 0, there are two values
dx dy

of the slope, and hence two distinct singular tangents;

thus the cui've goes through the point in two directions,

or, in other words, two branches of the curve cross at this

point. Such a point is called a real double point of the

curve, or simply a node. The conditions, then, to be satisfied

at a node (x-^^ y^) are that

/(..yx) = 0, ^ = 0,^ = 0,

and that ff(xp y^ be positive.

Ex. Examine for singular points the curve

3a:2 - xy - 2^2 + a;3 - 8/ = 0.
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Here
ox ay

The values a: = 0, y = will satisfy these three equations, hence

(0, 0) is a singular point.

Since

ay
dxdy

ay
dy^

6 + 6 a; = 6 at (0, 0),

= - 1 = - 1 at (0, 0),

= _4_483/ = -4 at (0,0),

hence the equation of the slope is, from (3),

of which the roots are 1 and — f . Thus (0, 0) is a double point at which

the tangents have the slopes 1, — f

.

Fig. 70.

163. Cusps. Next let 11= 0. The two tangents are then

coincident, and there are two cases to consider. If the curve

recedes from the tangent in both directions from the point

of tangency, it is called a point of osculation; and two

branches of the curve touch each other at this point. If
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both branches of the curve recede from the tangent in only-

one direction from the point of tangency, the point is called

a cusp.

Here again there are two cases to be distinguished. If

the branches recede from the point on opposite sides of the

double tangent, the cusp is said to be of the first kind ; if

they recede on the same side, it is called a cusp of the second

kind.

The method of investigation will be illustrated by a few

examples.

Ex. 1. /(a;, y) = aY - a^^* + a;« = 0.

|^= - 4a2a:3 + 6x6; ^= 2a%.
dx dy

The point (0, 0) will satisfy /(x, y)= 0, -^ = 0, f- = 0; hence it is a
qx (jy

singular point. Proceeding to the second derivatives,

^ ,_-12a2x2 + 30a:* = at (0, 0),

= 0,
dxdy

/2

The two values of -^ are therefore coincident, and each equal to
dx

zero. From the form of the equation, the curve is evidently symmet-

rical with regard to both axes; hence the point (0, 0) is a point of

osculation.

No part of the curve can be at a greater distance from the y-axis

than ± a, at which points -^ is infinite. The maximum value of ydx

corresponds to x = ±ay/^. Between a: = 0, a; = aV| there is a point

of inflexion (Fig. 71).
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Ex.2. f{x,y)=y-^-x^ = 0',

-'dx\ 'i^2y.
dx~ ""'

dy

Hence the point (0, 0) is a singu-

lar point.

Again, |/ = _ 6 a; = at (0, 0)

;

Fig. 71.

dxdy
=

dy'

dx
Therefore the two roots of the quadratic equation defining — are both

equal to zero. Thus far, this case is exactly like the last one, but here

no part of the curve lies to the left of the axis of y. On the right side,

the curve is symmetric with regard to the a:-axis. As x increases, y in-

creases ; there are no maxima nor minima, and no inflexions (Fig. 72).

Ex. 3. f{x, y)=x*-2 ax^y - axy^ + aY = 0.

The point (0, 0) is a singular point, and the roots of the quadratic

defining -^ are both equal to zero.
dx ^

Let a be positive. Solving the equation for y,

y

When X is negative, y is imaginary ; when a: = 0, y = 0\ when x is

positive, but less than a, y has two positive values, therefore two branches

Fig. 72. Fig. 78.

are above the x-axis. When x = a, one branch becomes infinite, having

the asymptote x = a\ the other branch has the ordinate ^a. The origin

is therefore a cusp of the second kind (Fig. 73).
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164. Conjugate points. Lastly, let ff be negative. In

this case there are no real tangents ; hence at the point

in question, no points in the immediate vicinity of the

given point satisfy the equation of the curve.

Such an isolated point is called a conjugate point.

Ex. f(x, y) = ay^ - x^ + bx^ = 0.

Here (0, 0) is a singular point of the locus, and

dx 'a

both roots being imaginary if a and b

have the same sign.

To show the form of the curve, solve

the given equation for y,

then y x^[^

hence, if a and b are positive, there are

no real points on the curve between a:=0

and x=b. Thus is an isolated point

(Fig. 74).

Fig. 74.

These are all the singularities that algebraic curves can

have, though complicated combinations of them may appear.

In all the foregoing examples, the singular point was (0, 0)

;

but for any other point, the same reasoning will apply.

Ex. /ix,y)=x^ + 33/8 _ 13^2 _ 4a, + 17^, _ 3 =,0,

df^-2x-4
dy
= 9y^-2Qy + 17.

At the point (2,1), /(2, 1) = 0, ^ = 0, ^ = 0; hence (2, 1) is a

singular point.
^^ ^^

Also fi( = 2; ^ = 0; |^= 18y - 26, = - 8 at (2, 1).
dx^ dxdy dy^

Hence — = ± 2 ; and thus the equations of the two tangents at the
dx

node (2, 1) are y -l = 2(x-2), y-l= - 2(a: - 2).
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When, at a singular point, H is negative, the point is

necessarily a conjugate point, but the converse is not always

true. A singular point may be a conjugate point when

H=0 (cf. Ex. 9).

Transcendental singularities. A curve whose equation involves a

transcendental function may have a stop-pointy at which the cui've ter-

minates abruptly (Fig. 48) or a salient point at which two branches of

the curve meet and stop without having a common tangent. In the first

case there is a discontinuity in the function ; in the second, a discon-

tinuity in the derivative.

They are usually discovered by inspection in tracing the curve.

EXERCISES

Find the multiple points, and the direction of the tangents at them,

in the following curves

:

1. aV = a2x2-4a:.3 3. (x"^ + i/y = ^ a'^xhj'^.

2. a;4-2ay3-3aV-2 02x2+0^= 0. 4. y^ = x^ + x\

5. If ay^ =(x — a)^(x — b), show that, when x =a, there is a con-

jugate point if a be less than b, a double point if a be greater than

b, and a cusp if a be equal to b.

6. Show that the curve y^ = (x — ay(x — c) has a cusp of the first

kind.

7. Draw the curve x^ + y^ = x^ + y^ in the vicinity of the origin.

8. Prove that the curve x* — 2 axhf — axy^ + a^y^ = has a cusp of

the second kind at the origin.

9. What change in the coefficient of x^y in the last example will

make the origin a conjugate point? Show that the tangents at this

point are still real and coincident.

10. Trace the curve x^ -\-2 ax'^y — ay^ = for points near the origin.

1

11. In the curve y(l + e') = x,- show that if a: = from positive side,

y , . y- = ; if from negative side, - = 1 ; hence a discontinuity in slope, i.e.,

a salient point.



CHAPTER XVIII

CURVE TRACING

165. Tracing a curve consists in finding its general form

when its equation is given.

Three kinds of equations present themselves.

1. Cartesian equations :

(a) algebraic ;

(h) transcendental.

2. Polar equations.

There is no fixed method of procedure applicable to all

cases. A few general suggestions for Cartesian equations

will be given, and then some examples worked out in detail.

Find —^ ; this will give the direction of the curve at
ax

any point, and will serve to locate maximum and minimum

ordinates.

Examine for asymptotes, and construct them. Deter-

mine on which side of each asymptote the corresponding

infinite branch is situated.

Find —^ ; this will give the direction of bending at any

point, and will determine the points of inflexion.

Examine algebraic curves for singular points, and deter-

mine whether they are nodes, cusps, or conjugate points.

If the minute configuration of a curve at any particular

point is desired, it is often expeditious to transform the

283
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origin to that point, and then neglect the higher powers of x

and ?/, as relatively unimportant. This principle will be

used and discussed in some of the examples that follow.

166. Illustration. Trace the curve

This curve goes through the origin ; and it is symmetric

with regard to the ic-axis, for the equation is not changed

when y is changed to — y \ but it is not symmetric with

regard to the ?/-axis.

Putting a; = gives y^ = ; and putting y = gives

a^ = ; hence the curve does not intersect either of the

coordinate axes, except at the origin.

Since ^ = ia^-^Qf^ ^ = ^ 4,yS ^i2xy,

hence ^^__1^+M_^
dx (6 X — 2 y^)y

which becomes indeterminate only for x= 0, y= 0.

Thus the origin is a singular point of the curve. The

second partial derivatives are

S='^^. ^r''- %'''-

which all vanish at the origin ; hence those of the third

order must also be obtained :

^-.4:r- ^'-^—0- ^^-12- ^ =

dif
The general equation determining -^, derived similarly

to that in Art. 161, is

dy^\dxj dxdy^\dxj dxdy\dxj da^
'
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which becomes in this case

»{l)*-«(S)'-«(D*«-»-
dy

Thus two values of -~ are 0, and the third root is infinite
;

showing that the a;-axis is tangent to two branches, and the

y-axis to a third branch.

To obtain the form of the first branches in the vicinity of

the origin it may be observed that since on these branches

y is evidently an infinitesimal of a higher order than x^

hence y^ may be neglected in comparison with the other

terms, and there results 7^ = — Q y\ as the equation of a

curve approximately coinciding with the two branches in

question near the origin.

This curve, and hence also the given curve, has obviously

a cusp of the first kind lying to the left of the axis of y,

Similarl)^, in the case of the branch that is tangent to the

y-axis, a:* may be neglected, and the resulting curve is

2/2 = 6 a:, which is a parabola situated on the right side of

the y-axis.

Thus, the third branch is parabolic in form near the

origin.

By solving for y,

y = ±V37Tj^v79^+^,

in which only the positive sign is to be retained before the

inner radical, as the negative sign would give imaginary

values to y. Any line parallel to the ?/-axis will therefore

meet the curve in only two points.

Again, regarding y as given, the resulting equation in x

has one positive root between and y because /(O, y) is

negative, and/(?/, ?/) is positive, and similarly one negative
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root numerically greater than ?/ ; the others being imagi-

nary. Thus no branch of the curve crosses the lines x=±i/,

except at the origin.

To examine for asymptotes. Put 1/ = mx + 6, then

a^ - {mx + 6)* + 6 xQmx + 5)2 = ;

i.e., (1 - m'^^x^ 4- (- 4 m% + 6 771^)3^ + (- 6 m%^ + 12 mh^x^

l-m^=0 and -4:m% + 6m^ = 0,

m = ± 1, 6 = ±
"

Let

then

thus 2/ = a; + ^

2»

are the asymptotes. The other two asymptotes are imagi-

nary.

To find the finite points in which this asymptote cuts the

curve, put m = 1, 6 = | in the above equation for x ; it then

becomes
0.a:4-f-0-2;3 + |^^0.^_|l = 0,

of which the four roots are

QO, 00, +fV2, -fV2;

hence the approximate values of the finite roots are ±1.06.

The manner in which the infinite branches approach their

asymptotes is best shown by the method of expansion, in

which 7/ is expressed in a series of descending powers of x.

Write the equation in the form

then
a^ X \ a^J

=^+1+2^-'
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287

^H'+l*« _...).

-[-!(!-/ ^
'"9_ +

2a^ J j

^2 2:4^:2 8^

Hence 8 +A.

A

2 8a; /

}

^=±ix-^

This verifies the equations of the asymptotes already

found ; and, moreover, the sign of the third term shows that

the curve is above the first asymptote for large positive

Fig. 75.

values of a;, and below it for large negative values. On the

other hand, the curve is below the second asymptote for
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large positive values of x, and above it for large negative

values.

The form of the second derivative —^ is too complicated

to be of practical use in determining the direction of bending.

Since each infinite branch is convex to its asymptote for

large values of x, hence on the upper right hand branch the

concavity is ultimately upwards. Near the origin the con-

cavity is downwards, hence there must be a point of inflexion

on this branch, and also on the branch symmetrical to it.

On the left hand branches there are no points of inflexion,

for if there were one on either branch there would be two

on that branch, and it would then be possible to draw a line

cutting the given fourth degree curve in more than four

points.

167. Form of a curve near the origin. In the above ex-

ample, in the vicinity of the origin, the curve approaches

the form of an ordinary parabola on one side of the t/-i\xia

(which is the tangent at its vertex), and has a cusp of the

first kind on the other side, the axis of x being the cuspidal

tangent.

In the first case x was neglected in comparison with y,

since ^^^q- = 0; while in the second case t/ is neglected in

1 1m 7y

comparison with x, since _^ ^^ = 0.

In many cases it is not so obvious which terms can be

rejected, especially when the lowest terms in tlie expression

are of high degree.

Before proceeding to the more difficult curves, a few ele-

mentary type forms will be given. The branches of every

algebraic curve approximate to combinations of these forms

in the vicinity of any assigned point as origin.
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1. Trace the curve ?/2 == X

Here
dx 2 a;*

d^y

dx^ 4^*

Fig. 76.

hence the slope is infinite at the

origin, and diminishes to zero at in-

finity, showing that the curve becomes more and more hori-

zontal; the bending is negative on the upper branch, and

positive on the lower.

2. The curve
I/
= x'.

Here
dy

.

dx
= 2x.

d?y

dx''

= 2,

hence the slope is zero at the origin, and

becomes infinite at infinity, showing that

the curve becomes more and more vertical

;

the bending is always positive.

3. The curve

In this case
dy

dx

Fig. 77.

X

Fig. 78.

hence the slope is zero at the origin,

is elsewhere always positive, and

becomes infinite at infinity. The bending changes sign

where the curve passes through the origin, the ip-axis being

the inflexional tangent.
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4. Show the form of the curve y^ = a^.

Here y = ± x*, f = ±y, g=±^-*. I
The curve is symmetrical with regard to the 2;-axis ; ana

since the slope is zero at the origin, the axis of x is tangent

to the upper and the lower branch. Since

a negative value of x makes y imaginary,

the curve does not extend to the left

of the origin, hence there is a cusp of

the first kind at this point. The slope

^'^" '^'
increases numerically to infinity when x

becomes infinite, and the bending is always positive on the

upper branch, and negative on the lower. This curve is

called the semicubical parabola because the ordinate is pro-

portional to the square root of the cube of the abscissa.

In each of these fundamental types, if the sign of either

member of the equation be changed, the curve is simply

turned over, and if x and y he interchanged, the curve is

revolved through 90 degrees.

Some more complicated cases will now be taken up. The

following general principles will be of use.

I. When the equation of an algebraic curve is rationalized

and cleared of fractions, if the constant term be absent the

origin is on the curve ; and the terms of the first degree,

equated to zero, give the equation of the tangent at the

origin.

II. If the constant term and terms of the first degree be

absent, the origin is a double point ; and the terms of the

second degree, equated to zero, give the equation of the pair

of nodal tangents.
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III. If all the terms below the third degree be absent,

the origin is a triple point ; and the terms of the third

degree, equated to zero, furnish the equation of the three

tangents at the multiple point. Similarly, in general.

For, let the equation be of the form

f(x, y')= ax -}- hy -\- (^caP' + dxy + ey'^^ + — = 0, (1)

then the tangent at the origin will be represented by the

equation

d/V
in which -f- is to be obtained from the relation

ax

f+'I.f = 0; (3)
dx dy ax

dti
hence, eliminating -— between the last two equations, the

equation of the tangent at the origin becomes

a^f^y^l^Ol (4)
dx ^ dy ' ^ ^

but at the point (0, 0),

dx dy

hence the equation of the tangent at this point is

ax-\-hy = 0. (6)

Again, if the constants «, h be zero, the expression for

-^, given by (3), is indeterminate, and the slope at the origin
ax
is to be obtained from the quadratic (Art. 161),

DIFF. CALC. 20
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hence eliminating -^ between (2) and (7), there results
ax

which is then the equation of the pair of tangents at the

origin ; but at the point (0, 0),

5y_2, ^L-^ ^-2e-

hence the equation of the pair of tangents at the origin is

c^^dxy-\'ey'^ = ^ (9)

Similarly proceed in general.

168. Another proof. The equation that gives the abscissas

of the intersections of the line y = mx with the given curve is

(a + bfriyx -\- (^c + dm -{- em^^x^ + ••• = 0.

There will be two intersections at the origin if a + 5m = 0,

that is, if m = — -• Hence the tangent at the origin is

a

Again, if a = 0, 5 = 0, every line through the origin will

meet the curve in two coincident points ; and in this case

the origin will be a double point. If, moreover, m be so

taken that c + dm -\- em^ = 0, the line y = mx will meet the

curve in three coincident points at the origin; hence the

equation of the pair of nodal tangents is to be found by

eliminating m between y = mx and c + dm -f em^ = 0, and

is therefore cx^ -\- dxy + ey^ = ; and so on.

169. Illustration. Oblique branch through origin. Expan-

sion of y in ascending powers of oc. Given the equation

y-2x + ^a^ + 4:xy-5y^-^62^+ y^== 0,
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to expand 1/ in ascending powers of x, and thence to trace

the locus in the vicinity of the origin.

The first approximation to the value of y, obtained by

omitting terms of order x^, is ^ = 2 a;, Avhich is the equation

of the tangent, and gives the direction of the curve at the

origin. In approaching the origin along the curve, the

variables x and ^ are infinitesimals of the same order, and

their ratio ^ = 2.
X

To obtain the second approximation to the value of y, test

for the order and value of the infinitesimal y — 2 a;, by com-

paring it with x"^^ thus

ar X \xJ \xj

= 9 when a:= 0, t^ = 0, ^=2,

hence y = 2 x -\- ^ 3^^ with an error above the second order

of smallness.

Since the second-order term 9 a^ is positive, the curve is

situated above the tangent y = 2x on both sides of the

origin. If desired, the third-order term can be obtained by

substituting 2x + ^3p' for y in the second and third order

terms of the given equation, and collecting the coefficient of

7^. The third approximation is then y = 2 x -{• ^ x^ -\- I'^O o;^.

This shows that the curve is above the parabola y = 2x-\-^q(^

on the right of the origin, and below it on the left. These

two curves have contact of the second order at the origin.

(2) Trace in the vicinity of the origin the curve

- '2.x^ {• xy + y'^ + a^ - 2y^ + x"^ - 2a?y = 0.

Here the origin is a double point, at which the tangents,

obtained by factoring — ^x^ -\- xy + y'^ =^ 0, are i/
— a; = 0,
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V 4- 2 a; = ; hence on one branch ^ = 1, and on the other^ X
^ = — 2 ; thus the branches are oblique, and on each branch
X
X and y are infinitesimals of the same order.

The second approximation to the equation of each branch

is to be obtained by taking account of the third-order terms

in the given equation, thus

Qy - x-yQy + 2x^ = - a? + 2f I

then, on the first branch the comparison oi y—x with t^ gives

.3

a:2

1 + 2

2 + B'

hence the branch has the approximate equation y = x -\- ^x'^^

which shows that it lies above the tangent ^ = 2: on both

sides of the origin.

The third approximation, obtained by writing the given

equation in the form

_ - 2:3 + 2 y3 _ a^ _^ 2 2^y

substituting for y the second approximation and dividing

as far as 3^^ is y = x + ^x^ -\- ^^a^;

which shows that the first branch is

above the parabola y = x + ^x^ on

the right, and below it on the left

of the origin.

On the second branch the com-

parison of y -{- 2x with x^ gives

X

Fig. 80.

-{-2x

B'-
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hence its approximate equation is y =— 2x -\- ^x^.

third approximation is?/ = — 2a; + ^^2^ — -^2^' ^^^

Both branches are shown in Fig. 80.

295

The

170. Branches touching either axis. Trace, near the origin,

the curve
xy*^ + Qi^y — y^ — 2x^ = 0.

The y-axis is a single tangent, and the a;-axis is a double

one ; thus the origin is a triple point.

To determine the form of the curve near the origin, the

method of Art. 169 will not apply, as

X, y are not infinitesimals of the same

order on either branch. Here a method

of trial will be employed. Suppose the __
terms xy^ and ?/* are of the same order

on one branch, then x and y^ are of the

same order, i.e.^ y is of the same order

as a;% hence the terms in the given

equation are of the respective orders

/

V
Fig. 81.

2,31,2,6;

thus the terms selected are of the lowest order, and are there-

fore the controlling ones near the origin, showing that there

is a branch having the approximate equation xy^ — y^ z= 0,

Removing the factor y^, the equation of this branch is

X — y^ = ; and the next term in its equation is given by

2x^ — 7?y -r +

hence the branch is situated to the left of the parabola

X — y"^ = ^ above the a^-axis, and to the right below that

axis.
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Next suppose there is a branch for which ^ and 2 2^ are

infinitesimals of the same order ; then 7/ has the same order

as a;% and the four terms have the orders

H, 4J, 6, 5;

hence there is no branch for which the two terms selected

are the controlling ones.

Once more, suppose there is a branch on which xt/^ and

0^1/ are of the same order; then dividing by xi/, it follows

that y is of the same order as cc^, and the orders in x of

the four terms are

5, 5, 8, 6.

Therefore there is a branch on which the first, second, and

fourth are the controlling terms, and its approximate equa-

tion is

xf-h 3^1/ -2x^=0,

which reduces to 1/^ + x^i/ — 2 a;^ = 0,

^.6., O + 2x2)(^_^2)=0.

n
Fig. 82.

!/- ^ =
y"

Hence the part of the curve in

question consists of the two parab-

olas 1/ = x\ 1/ = — 2 x^.

Writing the given equation in

the form

the first of these branches has the

equation

2^(^ + 22:2)
(approx.)

rrS

x(x'^+2x^')
= i^>
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hence the curve gets steeper than the

approximate parabola on one side and

flatter on the other. Similarly, the

approximate equation of the other

branch is

Combining these two sets of results,

the form of the curve in the vicinity

of the origin is as given in P^ig. 83.

171. Two branches oblique; a third touching r-axis.

Trace, in the vicinity of the origin, the curve

Since there are no terms below the third degree, the origin

is a triple point, and the three tangents represented by the

equation

2^2/ - 2/3 = 2/ (2; - ?/) ( 2; + y) =

have the separate equations

2/ = 0, 2/ = x, i/ = -x.

To show roughly, without resorting to expansion, how the

curve is related to these three lines, write its equation in the

form

First consider points near the origin on the branch that

touches the line v = 0. Here ^ ^J^r. ^ = 0, hence y is infini-

tesimal as to x, and the factor (^^ _ ^^ [g negative, but the

term on the right is positive, hence the other factor on the

left, 2/, is negative; thus the curve is below the line y=0
on both sides of the y-axis.
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Next consider points on the branch that touches the line

y =x. When x is positive, y is positive, hence the factor

^2 _ ^ is also positive ; thus y is greater than x^ and the

curve lies above the tangent y = x in the first quarter. In

the third quarter both x and y are negative, hence y"^ — x^ is

negative, and y is numerically less than x ; thus the curve is

above the tangent y = x'm the third quarter.

Lastly, consider points on the branch that touches the line

y = — X. Here again (j/^ — a;^) has the same sign as y, hence

in the second quarter y is numerically greater than x^ and

the curve is above the tangent ; but in the fourth quarter y
is numerically less than x^ and the curve is again above the

tangent.

The position of the three branches can, however, be ascer-

tained with greater accuracy from their approximate equa-

tions, obtained by the method of expansion : y = — aP' — a^ -"',

y=x-\-^x^— ^x^-\ ; y = — x-{-^x^-\-^a^'-.

The form of the infinite branches will be considered later,

and it will appear that the branches in the first and second

quarters are the only ones that ex-

tend to infinity (Fig. 84).

Form of curve in vicinity of point

(a, 5). The form in the vicinity of

any point (a, 6) can be found by

first transforming to (a, 5) as origin,

and proceeding as in Arts. 169-171.

This is equivalent to expanding the

given function f(x^ y) in powers of

X — a^ y — h\ and then expressing

h in ascending powers of the small

Fig. 84.

the small number y
number x — a.

Remark on expansion of implicit functions. The methods
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of Arts. 189-171 are often practically useful in purely alge-

braic operations. They may evidently be applied to any

implicit relation between x and y^ when the object is to ex-

press either variable explicitly in terms of the other, in the

vicinity of two given corresponding values (x = a, y = b')^

to any required degree of approximation.

EXERCISES

Examine the following curves in the vicinity of the origin and find

two or three terms of the expansion of y in ascending powers of x :

1. y^ = x^-\-x^', 3. y2^2x2 + x8; 5. y^ - x^ = x^ -2x'^y - x^;

2. y^ = 2x^y + x^', 4. y^ = x^ - x*; 6. dxy = 2x^ + 2yK

7. In No. 6, for the vicinity of the point (1, 2), expand y — 2 in as-

cending powers of a; — 1.

172. Approximation to form of infinite branches. It has

been shown that in the vicinity of the origin, the approxi-

mate form of each branch of the curve could be obtained

by examining the different suppositions regarding the rela-

tive orders of the infinitesimals x and y^ in consequence of

which two or more terms of the equation should become

infinitesimals of like order, and compared with these all the

other terms should be of higher order, and could therefore

be neglected in writing down the first approximation to the

value of y in ascending powers of x.

On a similar principle the approximate form of each

branch of the curve at great distances from the origin can

be obtained by examining the different suppositions, regard-

ing the relative orders of the infinites x and y^ in conse-

quence of which two or more terms should become infinites

of the same order, and in comparison with these all the other

terms should be infinites of lower order, and could therefore
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Fig. 85.

be neglected in writing down the first approximation to the

value of y in descending powers of x.

Ex. 1. Take the curve traced near the origin in Art. 171,

Here the supposition that y is an infinite of the same order as x*

makes the terms y^ and ar* infinites of order

4, and the term yx^ an infinite of order '^\\

thus there is an infinite branch which has

the approximate equation y^ = x\ and hence

passes out of the field in the manner shown
in Fig. 85.

Again, the supposition that y is of the

same order as x^ makes yx^ and x^ infinites

of order 4, and the term y^ an infinite of

order 6, which cannot be neglected in com-

parison. Hence there is no infinite branch on
which y is approximately proportional to x^.

Similarly the third supposition does not correspond to an infinite

branch.

Ex. 2. Consider the curve that was traced

near the origin in Art. 170,

xy^ -^^ x^y - y* -2x^ = 0.

The supposition that y is of the same

order as x^ makes the four terms of the

orders 3J, 4^, 5, 5; hence there is an infi-

nite branch whose approximate equation is

y^ -\- 2 x^ = 0. The form of the curve is shown in Fig. 86.

Hyperbolic and parabolic branches. Expansion in descend-

ing series. On an infinite branch the coordinates x and y
may behave as follows :

1. One of the coordinates may approach a finite number,

and the other become infinite. The branch has then a hori-

zontal or vertical asymptote (Art. 130), and is thus a hori-

zontal or vertical hyperbolic branch (Fig. 40).

Fig. 86.
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2. The coordinates may become infinites of the same

order. Then - = m, a finite number; hence there is, in

general, an oblique asymptote, that is, the infinite branch

is, in general, an oblique hyperbolic branch. [In a special

case it is an oblique parabolic branch. See Exs. 4, 5.]

3. The coordinates may become infinites of different or-

ders. If ^ is an infinite of higher order than x, there is a

parabolic branch on which the tangent tends to become ver-

tical (Figs. 85, 86),— called a vertical parabolic branch.

If 1/ is of lower order than x, there is a horizontal parabolic

branch (Fig. 81).

The test for Case (1) has been given in Art. 131. Case

(2) comes under the head of oblique asymptotes ; but it may

be conveniently treated along with Case (3) by the method

of this Article. The test for Case (2) is to observe whether

there are two or more terms of the highest degree in x

and y. If so, the supposition that t/ is of the same order as

X makes these the controlling terms.

Ex. 3. Test for oblique infinite branches the fourth-degree curve

ar* + a;8^ + 2 2/» = a:8 + 3 a;2 - y^.

Here there are two fourth-degi*ee terms, and the supposition that y
and X are infinites of the first order makes these the controlling terms

;

hence there is an oblique branch on which ^ = — 1. On putting the first

X
approximation, y= —x, in the third-degree terms, and dividing by x% there

results, for the second approximation, y = — x + S', and this, when used

in the same way, gives the third approximation, y = — x + d \- ••••

X
Thus the branch is hyperbolic, having the oblique asymptote y= —x+d.
There is also a pair of vertical parabolic branches, on which
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Ex. 4. Test in the same way the cubic curve

(?/ - 2 x) 2 (y + x) = 5 x2 + xy + 5 y2 + 3 a: - 7 y + 8,

in which the terms of the third degree have a square factor.

Corresponding to the single factor y -\- x there is, as before, a hyper-
7

bolic branch whose equation is y = — x + \ [-•••.

9 X
The equation of the branch corresponding to the square factor is

given by

^^ ^ y-Vx

The first approximation, y = 2x, used on the right, gives (y — 2x)2

= 9 x; and the second approximation, y = 2a: ± 3a;^, used in the same

way, gives y = 2a:i3a:^ + 2 + •••_in descending powers of x'^. Hence the

branch on which ^ = 2 has no linear asymptote. The curvilinear asymp-

tote of lowest degree is the second-degTee curve (y — 2 x — 2)^ = 9 ar.

There are thus two oblique parabolic branches.

Ex. 5. When the terms of highest degree have a factor repeated three

times, show that the corresponding expansion of y descends in powers

of x^, and that the asymptote of lowest degree is a cubic curve.

The method of successive approximation in descending

series can also be used in Case (3), when once the first ap-

proximation has been obtained by the method of comparison

given above.

Ex. 6. In the curve of Fig. 85, the first approximation is y = x^.

Substituting this on the right of ^/^ = a:* + x'^y, and taking cube root, the

second approximation \s y = x'^ -{- \ x'^ + •••, in descending powers of xs.

For the third term it is easiest to let ?/ = x^ + i x^ + p, substitute in

?/3 — a;4 _|_ ^2y^ and determine ;; so that the coefficients shall be equal as

far down as x^ ; then j9 = — ^y ; and y = x^ -\- \ x'^ — -^^ \- •••.

Ex. 7. In Ex. 5 of Art. 171 show that on two branches the controlling

terms are y"^ \- 2 x'^y - x^ that is, \_y
- x^ (V2 - 1)] \_y + x2(V2 + 1)],

and that the equations of these branches are

2^ = (±V2-1)x2t
2V2 16V2
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Remark on implicit functions. By this method, when any

implicit algebraic relation between x and y is given, the

value of either variable for large values of the other can be

computed by descending series, with small relative error.

Transcendental Cartesian Curves, A number of figures

of important transcendental curves are shown on pp. 237-238,

and in A. G., p. 211 ff. They are traced by tabulating y,

with assistance from --^, —^'
ax dor

EXERCISES

Apply the methods of this article to tlie equations at end of Art. 171.

In No. 6 compute the value of y when x = 20, by descending series.

173. Curve tracing : polar coordinates. In tracing curves

defined by polar equations there is, as in the case of Cartesian

equations, no fixed method of procedure.

If, as usually happens, the equation can be solved for /o,

successive values may be given to ^, and the corresponding

values of p computed and tabulated. In constructing the

table it is useful to record at what values of the radius

vector p has turning values. The critical values of 6 for

this purpose are, as usual, determined from the equations

-^ = 0, -^ = 00 ; and are separately tested by observing

whether the derivative changes its sign.

Next should be noted the asymptotic directions, which

correspond to those values of 6, if any, at which p passes

through an infinite value. The distance of the asymptote

from the infinite radius vector is given in magnitude and

sign by the corresponding value of the polar subtangent

(7 = /a^ -— . Again, if p tends to a definite limit, as 6 becomes
dp

infinite,. there is a circular asymptote.

k
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On sketching the path of the point (/a, ^) from the tabu-

lated record, greater accuracy in the direction of the curve

at any point may be obtained by computing the slope of

the tangent line to the radial direction, from the relation

tan i/r=p— . The same result can be achieved by tabulating

the values of <r, the polar subtangent, not merely for asymp-

totic directions, but for other convenient values of 6.

Assistance in tracing the curve may sometimes be obtained

by noticing whether there are any axes of symmetry.

Ex. 1. Trace the locus of the equation

p = a(sec2^ + tan2^) = a
1 + sin 2 e

cos -2

Here -^ = 2asec2^(tan2^ + sec2^)= 2a ^ "^ ^'" ^^>
dd cos2 2 6

tan«/r = p^=^cos2^,

o- = p tan j/' = .] a(l + sin 2 ^),

whence the following table may be constructed, and the locus traced .

P
(To

d0
tanxfi tr

a 2a .5 .5 a

i^ 3.7 a 14.8 a .25 .93 a

i'T +x > y a

iTT -3.7 a 14.8 a -.25 .93 a

hTT -a 2a — .5 .5 a

IT

"0
+
a

a

2a

~0
+
.5

^0

.5 a

u 3.7 a 14.8 a .25 .93 a

I'T 1^ > ;;;o a

asj^raptote

asymptote
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As 6 increases from to Jtt, the tracing point P moves from ^ to J5,

and as 6 increases by successive steps to ^tt, Itt, tt, ^tt, f tt, Itt, 2ir, P

Fig. 8T.

moves respectively from B' to C, C to D, D to E, E to F, F* to Gy G to

D, Dto A. The lines ^ = :^7r, ^ = |ir are axes of symmetry.

Ex. 2. Transform to polar coordinates the equation

(x^ + y^y - 2 ay(x^ + 3^^) = a^x%

and then trace the curve.

On putting x = p cos ^, y = p sin 0, dividing by p*, and solving the

quadratic for p, there results

p = a(sin 6 ± 1).

First take the upper sign ; then

^ = acose, tan^=fi^ = ?ilil±l,
dO ^ dp cosO

and the following table is easily computed.

The figure is shown in Art. 108. If the lower sign be taken, the same

curve will be traced in a different order. The line ^ = ^ tt is an axis of

symmetry.
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e p tani/^

a a 1

iT 1.7 a .71a 2.41

\^ 1.87 a .5 a 3.73

fTT

2a

1.7 a -.71a

+

-2.41

TT a — a -1
f^ .29 a -.71a -.41

It .29 a

"0
+
.71a

"0
+
.41

V'T .5 a .87 a .58

27r a a 1

p a maximum, if;
= ^tt.

p a minimum, if/
= 0^

origin a cusp.

EXERCISES

Trace the following curves

:

X
1. y

4. y^(x - a) = (x -\- a) x^.

5 xY = aKx^ - y^)-

- x^ has two branches which are

1 +X2
2. ?/2 = 2 a:2 + x^

3. 2/2 = X* + x^.

6. Show that the curve y^ = x^

both tangent to the axis of x at the origin.

. 7. Determine the direction of the curve y^ = x^(x — a) at each point

where it crosses the axis of x.

8. Trace the curve y^ — axy — b^x = in the neighborhood of the

origin.

9. Show that the curve p = 1 + sin 5 ^ consists of 5 equal loops.

10. Trace the curve p cos 2 ^ = a.

Find its asymptotes and lines of symmetry.

11. Trace the curve p = a (tan ^ — 1).

v-1- V — 1 - V
12. Trace the curves y = e'', y = e*, = e*, -

13. Find the points of inflexion of the curve y = e-"^.

This curve is known as the •probability curve (Fig. 49).

14. p=a + sin|^.

y
= e!e-3.

15. p = a(l - tan^).



CHAPTER XIX

ENVELOPES

174. Family of curves. The equation of a curve,

/(^, y') = 0,

usually involves, besides the variables x and y^ certain coeffi-

cients that serve to fix the size, shape, and position of the

curve. The coefficients are called constants with reference

to the variables x and ?/, but it has been seen in previous

chapters that they may take different values in different

problems, while the form of the equation is preserved. Let

a be one of these "constants" ; then if a be given a series

of numerical values, and if the locus of the equation be

traced, corresponding to each special value of a, a series of

curves is obtained, all having the same general character,

but differing somewhat from each other in size, shape, or

position. A system of curves so obtained by letting one of

the constant letters assume different numerical values in the

fixed form of equation / (a:, ?/) = is called a family of

curves.

Thus if A, h be fixed, and p be arbitrary, the equation

Qy— ky'=2p(x—K) represents a family of parabolas, having

the same vertex (^, ^), and the same axis y = k^ but having

an arbitrary latus rectum. Again, if k be the arbitrary

constant, this equation represents a family of parabolas

having parallel axes, the same latus rectum, and having

their vertices on the same line x = h.

DIFF. CALC. —21 307
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The presence of an arbitrary constant a in the equation of

a curve is indicated in functional notation by writing the

equation in the form f(x^ ?/, a) = 0. The quantity a, which

is constant for the same curve but different for different

curves, is called the parameter of the family. The equations

of two neighboring members are then written

f(x,y,a)= (), f(x,y,a-\rK)=Q,

in which ^ is a small increment of a ; and these consecutive

curves can be brought as near to comcidence as desired by

diminishing h.

175. Envelope of a family of curves. The locus of the

points of ultimate intersection of consecutive curves of a

family, when these curves approach nearer and nearer to

coincidence, is called the envelope of the family.

Let /(^,y, «)=0, f(x,y,a + h')=0 (1)

be two curves of the family. By the theorem of mean

value (Art. ^Q)

f(x, y,a+ K) =f(x, y, a) + h^^Qc, y, a+ OK), (2) [0 < 6> < 1

but the points common to the two curves satisfy equations (1),
•J

/•

and therefore also satisfy ~(x, y, a + 6h)= 0. Hence, in

the limit, when A = 0, it follows that ~- (a;, ^, a) = is the

equation of a curve passing through the ultimate intersec-

tion of the curve f(x^ y, a)= with its consecutive curve.

This determines for any assigned value of a a definite point

of ultimate intersection on the corresponding member of the

family. The locus of all such points is then to be obtained

by eliminating the parameter a between the equations

'> /•

f(x, y. «) = 0, ^ (a:, y. a) = 0.
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The resulting equation is of the form F(x, y)= 0, and

represents the fixed envelope of the family.

176. The envelope touches every curve of the family.

I. Geometrical proof. Let J., B^ O be three consecutive

curves of the family ; let J., ^ intersect in P \ B, C inter-

sect in Q, When P, Q approach coincidence, PQ will be

the direction of the tangent to the envelope at P ; but since

P, Q are two points on B that approach coincidence, hence

PQ i^ also the direction of the tangent to 5 at P ; thus B
and the envelope have a common tangent at P ; similarly

for every curve of the family.

II. More rigorous analytical proof. Let -^fCp^-, y? «)=

be solved for a, in the form « = <^(x^ y); then the equation

of the envelope is

/(a:, y, <^(a:, y))=0.

Equating the total a:-derivative to zero,

dx dy dx d<f)\dx dy dxj '

but ^ = -^ = 0, hence the slope of the tangent to the en-

velope at the point (x, y) is given by

dx dy dx
'

but the same equation defines the direction of the tangent to

the curve /(a;, y, a)= at the same point. Therefore a

\
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point of ultimate intersection on any member of the family

is a point of contact of this curve with the envelope.

Ex. Find the envelope of the family of lines

obtained by varying m.

Dilferentiate (1) as to m,

y = rnx + ^, (1)

= ^-^ (2)

Hence the line (1) meets its consecutive line where it meets (2). To

eliminate m, solve (2) for m, substitute in (1), and square; then the locus

of the ultimate intersections is the fixed parabola

111. Envelope of normals of a given curve. The evolute

(Art. 158) was defined as the locus of the center of curva-

ture. The center of curvature was shown to be the point of

intersection of consecutive normals (Art. 151), hence by

Art. 175, the envelope of the normals is the evolute.

Ex. Find the envelope of the normals to the parabola y^ = ^px.

The equation of the normal at (x^, y^) is

y-yi = ^(^-^i)'

or, eliminating x^ by means of the equation y^^ = 4 px^,

The envelope of this line, when y^ takes all values, is required.

Differentiating as to y.,

Substituting this value for y^ in (1), the result,

27py^ = 4:(^x-2p)%

is the equation of the required evolute.
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178. Two parameters, one equation of condition. In many
cases a family of curves may have two parameters which are

connected by an equation. For instance, the equation of

the normal to a given curve contains two parameters, x-^^ y^,

which are connected by the equation of the curve. In such

cases one parameter may be eliminated by means of the

given relation, and the other treated as before.

When the elimination is difficult to perform, both equa-

tions may be differentiated as to one parameter a, regarding

the other parameter /3 as a function of a, giving four equa-

tions from which a, j8, and -^ may be eliminated, and the
da

resulting equation will be that of the desired envelope.

Ex. 1. Find the envelope of the line

a b

the sum of its intercepts remaining constant.

The two equations are

2 + 1 = 1,
a b

Differentiate as to a,

a + b

-X y dh ^Q

1+^ = 0;
da

eliminate — , then — = ^, therefore
da a-2 &2

X y x^y_

<^ b a b I ^^^^^ a=V^, 6=V^;
a~b~ a + b~ c

therefore Vx -f Vy = Vc

is the equation of the desired envelope.
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Ex. 2. Find the envelope of the family of coaxial ellipses having a

constant area.

Here +f,=ii
a2

' 62 '

ah = k\

For

Qce

symmetry, regard a and h as functions of a

Ma + adh = ;

^ = t = h
a2 62 2

single parameter U

and the envelope is the pair of rectangular hyperbolas xy =.±\ lc\

Fig. 89

Note. A family of curves with a single parameter may have no

envelope ; i.e., consecutive curves may not intersect ; e.g., the family of

concentric circles x^ \- y"^ — r% obtained by giving r all possible values.
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EXERCISES

1. Find the envelope of the parabolas 7/^ = ?l (a: — a), a being a

parameter.
^

2. A straight line of fixed length a moves with its extremities in

two rectangular axes ; find its envelope.

3. Ellipses are described with common centers and axes, and having

the sura of the semi-axes equal to c. Find their envelope.

4. Find the envelope of the straight lines having the product of

their intercepts on the coordinate axes equal to k\

5. Find the envelope of the lines y — /3 = 7n(x — a) + rv 1 + m^, m
being a variable parameter.

6. What is the evolute of the envelope of Ex. 5 ?

7. Circles are described on successive double ordinates of a parabola

as diameters ; show that their envelope is an equal parabola. Find what
part of this system of circles does not admit of an envelope.

8. Show that the envelope of

/(x, y)a'^+ <f>(x, !/)a-hil/(x, y) =0
4/(x,^).,/r(x,y)-[<^(:.,2/)]2 = 0.

9. Find the curve whose tangents have the general equation

y = mx± -y/am^ + bm + c.

10. Prove that the circles which pass through the origin and have

their centers on the equilateral hyperbola

x^ — y^ = a^

envelop the lemniscata (x^ -\- y^y = 4: a\x^ — y^).

11. If in Ex. 10 the locus of the centers of circles passing through

the origin be the parabola 2/^ = 4 ax, the envelope will be the cissoid

y%x+2a)-x^ = 0.

12. Show that a family of curves having two independent parameters

has no envelope.

13. In the "nodal family" (y - 2 a)^ = (x - a)^ + Sa* - y^, show

that the usual process gives for envelope a composite locus, made up of

the "node-locus" (a line) and envelope proper (an ellipse). Generalize.

I
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3j»iC

NOTE A (P. 29)

Let y =f(x) be a function which is continuous and increasing

from x = ato x=b; and let /(a) = A, f{h) = B.

Let the inverse function be written x= cfi{y); then it is pro-

posed to show that (j>(y) is a continuous function of y from

y = A to y = B.

Let li be any assigned positive number numerically less than

h — a] then, since f{x) is an increasing function,

f{x + h)-f(x)

preserves its sign unchanged when x and x -\-}i both lie anywhere

in the interval from a to b. Let the smallest value that this dif-

ference can take for the assigned value of h be

/(a; + /0-/(x) = fci (1)

then when x' >x + h,

f(x')-f(x)>k. (2)

Consequently, if

f(x')-f(x)<k, (3)

then x' must be less than x + h^

i.e., x' — x<,?i; (4)

or, putting f(x) = y, f(x') = y', x = cji (y),
»' = <^ (y*),

(3) and (4) may be written thus

:

if y'-y<k, (5)

then
<f) {y')

—
<i>(y) < h, the assigned number. (6)

314
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Hence, <f> (y) is a continuous function of y throughout the stated

interval. A similar proof applies to intervals in which f(x) is a

decreasing function. Hence

:

For every interval in which a function is continuous there exists

an interval in which the inverse function is continuous.

NOTE B (P. 60)

To prove „j!?oo( 1 H— ) =^> when m is a positive integer.

The proof of Art. 30 can be readily completed by use of a

method exemplified later in Art. 67. As shown in Art. 30 the

problem is to prove rigorously that the limit, when m = oo, of the

sum of the entire m + 1 terms of the series

l_i l_il_2 i_i i_m=Li
.,1,1 w 1 m m 1 m m ,..

^^r"^l""2~+i""2 —-^""^l-^ m ^ ^

is equal to the sum to infinity of the series

without unduly applying the theorems of limits in the case of an

infinite number of variables. For this purpose the remainder of

series (1) after the first n terms will now be examined.

Let the sum of the first n terms in (1) and (2) be denoted by

Sr, and E^ respectively,, then

and, evidently, when n is any finite number,

Next let R^ be the remainder of the series (1) after its first n

terms, that is, the sum of the last m + 1 — w terms ; then the

sum of the series is

S = S,+ R,, (6)
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^^j lim r» lira o lira -n /ij\

Now the first terra in R^ is the (n + l)st term of series (1), and

the ratio of this term to the preceding (which is the last term

in (3)) is

1 —VlUJl
m

but this ratio is less than -, and evidently the ratio of any subse-
n

quent term to the preceding one is still less than this, therefore

hence J^^ E. < ^.(-l^) < ^^^^^^^lyf <«)

It follows from (5), (7), (8) that

«'^»^-^"<
(,.-lK.-l)!

' <^)

and therefore that this difference can be made as small as desired

by taking n large enough. Thus the limit when m=QO of the

sum of series (1) is equal to the limit approached by the sum of

the first n terras of series (2) when n is infinitely increased ; and

this completes the proof of Art. 30, when m is a positive integer.

To prove the theorem when m is unrestricted.

If m is positive but not an integer, let it be supposed to lie

between the two positive integers p and p-\-l, i.e. ^9 < m <p -f- 1

;

then ->i, l+l>l+i, ('i4.1Y>f'i+iY
p m p m \ pj \ mj

r,
mj

(2)
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HeQce, from (1) and (2),

It will now be shown that when j), m, p -{-1 all = oo, the first

and third members of these inequalities have the common limit e.

For, since the exponents m —p, m—p — 1 are finite,

but since p,p-\-^ are infinite positive integers,

hence e is the common limit of the first and last members of (3),

and is therefore also the limit of the intermediate member,

Finally, let m be any negative number, say — jj,

- c-i)-=('-r=(^r

=G-^)'=('%-^)'
Writing kiov p — 1,

but when m = — co and A; = + oo.

therefore, by (4),

lim
m



318 DIFFERENTIAL CALCULUS [Note C.

NOTE C (P. 187)

On maxima and minima in two variables.

In giving the criteria for maxima and minima in Art. 107 it

was stated that it is in general unnecessary to consider terms

above the second degree in h and k, as such terms are usually

infinitesimals of an order higher than that of the second degree

terms. The exceptional cases, in which some of the terms of

higher degree may become of equal importance with the second

degree terms, can be readily treated by the method of comparison

illustrated so extensively in the later chapter on curve tracing.

Using the notation of Art. 107, let

A<^ = <^ (a 4- /i, & + ^) — <^ (a, &) = ^2 + ^3 + ?*4 -i , (1)

in which n^ denotes a homogeneous polynomial in h and k of

degree r; and, representing the function (f>{x, y) as usual by the

ordinate of the surface whose equation is z = cji (x, y), let the

origin be transferred to the critical point whose coordinates

are a, b, <^ (a, b) ; then the equation of the surface becomes

2' = A<^ = W2 + Wg -f- u^ + .-., (2)

in which h, k, z' are the new current coordinates. The equation

of the tangent plane at the origin is then z' = 0, and the curve of

section which it makes on the surface has the equation

W2 + W3 + W4+-- = 0. (3)

The form of this plane curve in the vicinity of the origin will

be a decisive test for a maximum or minimum. By Chapters

XVII, XVIII, when the lowest terms are of the second degree,

the origin is either a node, a cusp, a point of osculation, or a con-

jugate point. If the factors of Wg are imaginary, the origin is

an isolated or conjugate point of the locus, hence, in the vicinity

of the critical point, the surface is altogether at one side of the

tangent plane, and has a maximum or minimum ordinate. If the

factors of U2 are real and distinct, the curve of section has two
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branches passing through the origin, hence part of the surface

will be above the tangent plane and part below it, and there will

thus be no complete maximum or minimum. In both of these

cases it is unnecessary to examine the higher terms unless a

minute knowledge of the deportment of the given function is

desired.

Lastly, let Wg be a complete square of the form {AJi -f Bicf.

In this case, the origin is usually either a cusp or a point of oscu-

lation, as in Art. 163 ; but it may possibly be a conjugate point

of the kind noticed in Ex. 9, Art. 164, at which the tangents are

real and coincident. It is therefore necessary to examine the

higher terms. For convenience transform the axes so that

h' = Ah -\- Bk, k' = B7i — Ak, then the equation of the curve

takes the simple form

7i'2+?*'3 + <+-=0. (4)

When the method of comparison of Art. 170 is applied, suppose

it is found that h' and k'"* are of the same order, then all the terms

of (4) that are of the same order as h'^ will constitute a poly-

nomial in h' and k'"*, which can, as in Art. 170, be factored into

the form (h' + fik"^)(Ji' -\-vk"^). These will be the controlling

terms ; hence, when /x, v are imaginary, the origin is a conjugate

point, and there is a maximum or minimum ordinate of the sur-

face ; but when fi, v are real and distinct, the origin is a cusp or a

point of osculation, according as m is or is not a fraction with

even denominator, and there is no complete maximum or mini-

mum. When fx, V are real and equal, the above process is to be

repeated. For a simple illustration see Ex. 5, p. 190.

Ex. 1. Show that when c< 1, unity is a turning value of

= 1 + (a; + ?/)2 + (a; + y) {x'^ + a;y + y2) + 4 cy^^

Ex. 2. For different values of c, examine in the vicinity of the values

a; = 0, y = 0, the deportment of the function

c (a:^ + .3 ?/3) 2 _ 4 (a;2 + 3 y3) (a;3 ^ 5 y4) ^. 2 (x3 + 5 y*)2.
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NOTE ON HYPERBOLIC FUNCTIONS

Definitions and direct inferences. Eor the present purpose the

hyperbolic cosine and sine may be defined analytically in terms

of the exponential function, as follows

:

cosh a; = 1 (e* 4- e- *), sinh a; = i(e* — e'"), (1)

and the hyperbolic tangent, cotangent, secant, and cosecant are

then defined by the equations

, 1 sinh a; ,, cosh a;
tanh X = , coth x = -r——

,

cosh a; smha;

sech X =—:—

,

csch x
cosh X sinh x

(2)

Among the six functions there are five independent relations,

so that when the numerical value of one of the functions is given,

the values of the other five can be found. Eour of these relations

consist of the four defining equations (2). The fifth is derived

from (1) by squaring and subtracting, giving

cosh^ X — sinh^ x = l. (3)

By a combination of some of these equations other subsidiary

relations may be obtained ; thus, on dividing (3) successively by

cosh^a;, sinh^a;, and applying (2), it follows that

1 — tanh- X = sech^ x,

coth^

;

anh- X = sech^ x,^ '

' X — 1 = csch^ X.

}

Equations (2), (3), (4) will readily serve to express the value

of any function in terms of any other. For example, when
tanh a; is given,

1
coth X = —, sech x =Vl — tanh^ x,

tanh a;

cosha: = - ^ . sinha: =—i^I^
•Vl — tanh^a; Vl — tanh^a?

Ex. 1. From equations (1) prove

cosh (— a;) = cosh x, sinh (— a;) = — sinh x,

cosh 0=1, sinhO = 0, coshoo = 3o, sinhao=QO.
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Ex. 2. From equations (3), (4) show that

cosh a; > sinh X, coshx>l, tanhaj<l.

Ex. 8. Prove that taiih x==±l, when a; = ± oo.

Ex. 4. By direct substitution from (1) verify the addition formulas

sinh {x ±y) = sinh x cosh y ± cosh x sinh j/,

cosh (x ±y) = cosh x cosh y ± sinh x sinh y

;

and hence derive the conversion formulas

cosh X + cosh y = 2 cosh l(x -{ y) cosh K^ — y)>

sinh X + sinh y = 2 sinh ^(x + y) cosh K^ —
2/) J ^tc.

Show that the corresponding formulas for the circular functions could be

verified by their exponential expressions (p. 101).

Ex. 5. Prove the identities : sinh 2 x = 2 sinh x cosh x,

cosh 2x = cosli^ X + sinh2 x = 1 + 2 sinh^ x = 2 cosh^ x — 1.

Ex. 6. Prove cosh nx + sinh nx = e"=« = (cosh x + sinh x)».

Derivatives of hyperbolic functions. By differentiating (1),

— cosh x = \{e' — e")= sinh a;, (5)

^sinha; = |(e* + e-*)=cosha;;' (6)

hence Atanha^ =#^^ "^^^'^
-f

^^'^= sech^^. (7)
dx ax cosh x cosh- x

(P d^
Also, -^ cosh a; = cosh «, -— sinh a; = sinh a;. (8)

dxr oar

— cosh mx = m^ cosh mx, —— sinh mx = m^ sinh mx. (9)
da^

'
da;2

w
It thus appears" that the functions sinh x, cosh x reproduce

themselves in two differentiations, just as the functions sin ar,

cos X produce their opposites in two differentiations. In this

connection it may be noted that the frequent appearance of the

hyperbolic (and circular) functions in the solution of physical

problems is due to the fact that they answer the question : What
function has its second derivative equal to a positive (or negative)

constant multiple of the function itself ?
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Ex. 7. Eliminate the constants by differentiation from the equation

y = A cosh mx + B sinh mx, and prove —^ = iii^y.

dx'^

Ex, 8. Prove — coth x = — csch2 x, — sech x = sech x tanh x.
cZx d:x

Expansions. By applying Maclaurin's theorem, using (5), (6),

(8), or else by substituting the developments of e^, 6""=, in (1), the

following series are obtained

:

/y- /yi* /y»6

sinh x = x-\-—- + —--{
(10)

3! 5! 7!

By means of these series, which are available for all finite

values of x, the numerical values of cosh a:, sinh x can be com-

puted and tabulated for successive values of x.*

Derivatives of inverse hyperbolic functions.

Let y = sinh~^ x, then x = sinh y ;

dx = cosh ydy=^/l-^xrdyf

hence ^ sinh-^T—
^

(11)
(^^ VI + x^

Similarly, ^ cosh-^x—
^

(12)
ax ^x' - 1

Again, let y = tanh~^ Xy then x = tanh y,

dx = sech^ y dy = (1 — tanh- y) dy=(l--^^2/1

therefore ^ fnnli-^ r — (13)
dx l-a;-J,<i

Similarly, Acoth-ia; = -J--'
.

dx XT — lj^>i
(14)

tppI-,-1 r — ^ rnqh-i ^ — ~" ''•

dx X xVl-x:^

t Qpli-l /*. — ^^ qinh-l -^ ~ -^
.

da; X xv'l+x'

* See Tables, p. 102, Merriman and Woodward's " Higher Mathematics.
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Ex. 10. Prove * d sinh-i ^ = ^^
, d cosh-i

* ^^

Vx2 + a'^ a V^
adx

x<m « *- — a''J,<a

Relation of hyperbolic functions to hyperbolic sectors.

In the circle a^ + ?/2 = a^ let A be the area of the sector in-

cluded between the radii drawn to the points (a, 0), (a;, ?/); and

let 6 be the included angle ; then, by geometry,

2A=a'e=a' sin-^-^ = a^ cos "^ -•

a a

Again, it is shown in Integral Calculus by means of the deriva-

tives in Ex. 10, that in the hyperbola a? — y^ — a?, if A be the

area of the sector included between the radii drawn to the points

(a, 0), (x, y\ then 2 A'= a^ sinh"^^ = a" cosh-^-.
a a

Thus the hyperbolic functions are related to hyperbolic sectors

as the circular functions are related to circular (and elliptic)

sectors-t

Expansions of inverse hyperbolic functions.

By the method of Art. 67,

sinh-^a:=a.-^ | + 1||_.... [-l<aj<l] (15)

Another series, convergent when a; > 1, is obtained by writing the

derivative in the form

dx

hence, sinli->x=^+log»+^ A._l 3 _!. _^...^ (16)

* These derivatives will be found useful in the "Integral Calculus."

t For a treatment of the hyperbolic functions from this point of view,

3 MeiTimaJi and Woodward.

DIFF. CALC.— 22
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where A is a constant, which is shown later to be equal to lo^2
;

similarly, cosh-^x=^+loga;-^- —^-^'-—
, (17)

which is always available for cohiputation, since cosh"'a; is a real

number only when a; > 1.

Ex. 11. Prove that tanh-ix = x-\- - x' +-a:5 + •••, and that this series is
3 5

always available when tanh-^x is real, i.e., when —1 < x< 1.

Logarithmic expressions for inverse hyperbolic functions.

Let a;= cosh 2/7 then Va^— l=sinh?/.

a;+ Va?-— 1= cosh ?/ -|- sinh ?/= e",

hence 2/=cosh-^x,=log(a;H- Va;-— 1). (18)

Similarly, sinh-^aj=log(a;4- V^+1). (19)

Also sech-ia;=cosh-^- =log ^ + ^^~^'
, (20)

X X

csch-'a;= sinh-^ - = log ^ + ^^^^+^
. (21)

X

Again, let x= tanh y=

X X

e^-e-'J

e^+e-^'

therefore i±^=^ = e%
1— a; e-'J

I.e..

1— a;

hence tanh-iaj=- log ?^t^, (22)
2 \—x

and coth-ia;=tanh-^^ = -log^- (23)
X 2 x—\ . .

Ex. 12. Show from (18), (19) that, when x =00,

sinh-ix -logx = log2, cosh-i x — log x = log 2,

and hence that the constant Am (10), (17) is equal to log 2.
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Grrapks of hyperbolic functions. The student is advised to

sketch the graphs of these functions from their definitions and

fundamental properties. Aid is also obtained from the values

of their first and second derivatives.

Ex. 13. The curve y = sinh x has an inflexion at the origin, the slope of

the tangent being unity ; the bending is upwards to the right and downwards
to the left of the origin.

Ex. 14. The curve y = cosh x is symmetrical as to the ?/-axis, and has a

minimum ordinate at a; = 0.

Ex. 15. Show that the curve y = tanh x has two asymptotes y = ±1.

Ex. 16. Using the graphs, give approximate solutions of the transcendental

equations , tanhx = jc — 1, cosh re = x + 2, sinhaj= -x, cos x cosh x=l.

Ex. 17. The equation of the catenary is - = cosh - ; show that the deriva-

tive of the arc is -^ = cosh -, and hence that - = sinh -.
dx c c c

Gudei-manian function. When two variables x, y are so related

that sec y = cosh x, then y is called the Gudermanian function of x^

and is denoted by gd x. The angle whose radian measure is equal

to gd X is called the Gudermanian angle of x.

Ex. 18. Show that the six hyperbolic functions of x can be expressed as

circular functions of gdx: e.g. , cosh x = sec gd x, sinh x = tan gd x, etc.

Ex. 19. The curve y = gdx has asymptotes y = ± ^ir.

Ex. 20. Prove — gdx = sech a;, — gd-^ x = sec x.
dz dx

NOTE ON INTEEPOLATION BY TAYLOR'S
THEOREM

Two ordinates given ; to compute an intermediate ordinate. In

the curve y =f(x), let the ordinate at x = a be y^, and let the

ordinate at a; = o -h ^ be 2/2- If Vu 1/2 be given numerically, it is

required to compute the ordinate y at the intermediate point

x = a + c/i, where e < 1.
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Consider the three equations,

2^1 =/(«), (1)

y, =f(a + h) =f(a) -h hf (a), [neglecting ^y"(a)] (2)

y=f{a + e/0 =f(a) -f ^hf (a)
; (3)

then from (1), (2), hfXa) = 2/2-2/1; lience, by (3),

2/ = 2/1 + € te - 2/1). (^)

The neglect of the term h^f"{a) in (2) is justified either when
h^ is very small, or when f"(a) is zero. The former is the case

when the given ordinates are very close together. The latter is

the case when f(x) is of the first degree, i.e., when the locus

y =f(x) is a straight line; hence {A) gives accurately the ordinate

of the straight line joining two given points on a curve.

TJiree equidistant ordinates given ; to compute an intermediate

ordinate. Let the ordinate at a — h be 2/1, at a be 2/2? at a + 7i be

2/3; it is required to find the ordinate at a + di, where —!<€<!.
In this case, neglecting 7i^f"'(a),

2/1 =/(« - h)= f(a)- hf(a)+ihr'(a), (4)

2/2 =/(«), (5)

y, =f(a + /0= /(a)4- hfiaj-hiJ^fia), (6)

y =f(a + c70=/(a)+ ehfXa)-{-i.Vir'(a). (7)

From (4), (5), (6), y, - 2 y, + y, = Ji'f"(a); (8)

and from (4), (6), 2/3-2/1 =2hf(a)) (9)

hence, substituting for hf(a), h^f"(a), in (7),

2/ = 2/2 + i€(2/3 - 2/1)+ ic'C?/! - 22/2 + 2/3)- (-S)

This interpolation formula gives accurately the ordinate of a

parabola whose equation is of the form y = A-{- Bx + Cx"^.

Four equidistant ordinates. The result, similarly found, is

2/= i(2/i + 2/4)-|(2g-r) + ie(2/3-2/2-^V^)

-^^e\2q-r)-i^e\ (C)

in which g = 2/i — 2 2/2 + 2/3? ^ = 2/i — 3 2/2 + 3 ^3 — 2/4-
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8. Half that of paraboloid = «V. of rectangle.

4

12. Breadth = -^, thickness = -^.

15. Height is equal to diameter of base.

16. V6(c+&). 17. (at + 6f)f-

18. Sine of semi-vertical angle is J. 19. V2. 20. ^^
4

22. One mile from destination. 23. 30°.

26. Side parallel to wall is double the other. 27. ~
Art. 90

3. .00145. 8. 24Vs. 9. 2 ah. 10. ±2.

11. Stt. 12. 2. 13. 1 and 5.

Art. 96

1. dz = ^f^^" y)
. ax + M|l11 . 0/(x)dx ; substitute 4>(x) for y.

(jx (jy

2. ^=:zl.
dx y

Art. 97

3 dy ^ ax + fey + .<7 . 4 ^^3^.
' dx hx + hy+f ' dx y^
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Art. 99

Art. 105

'1. x + 2/ + a;2 + a;y + ix3-^a;2/2_iy3..,.

3. Vx tan y + ^^ ^^" •' + A;Vx sec^ y + - (
~ ^^

^ taji(y + ek)

+ ^^L1£^!(^^±M + 7,-2 2Vx + tJ/i sec2(?/ + ek) tan (?/ + 0A;)V
a/x + fcA /

4. - 25 +(x- 2)2+ (2, -3)2+ (0-1)2.

Art. 107
4. X = 0, y = 0. 7. The three parts are equal.

S. 6a^; the parallelepiped is a cube.

9. - = y = —^ -\- a- + )
. ^j^^ ^^Q upper sign there is a maximum

;

a 6 a'^ + b'^

with the lower, a minimum.

10. X = y =— , min. ; x = y = -, max.

1. «i.
27

Art. 108

^ n

3 «'^'

a2 + 52
5. Min., x = ± a.

6. Max. , X -= «v/2; min., x = 0.

Art. 117

7. Max. for a: = —•

8 8 3>/3 ^t)

3. (a) xxi + j/j/i = c2
; (?)) xyi + xi?/ = 2 k^

;

(c) (2 xi?/i + y{^)x + (xi2 + 2 xi2/i)2/ = 3 a^
;
(d) y-yi- cotxiCa; - xi).

5. X = 2 ± VJ. 8. P = v/axi2/i, a.

15. At (0, 0), 90°. At the other points, 45°. 16. ^^^ ~ ^^
- 17. ^

3a — X a.

Art. 120

3. Subtangent = p tan a ; subnormal = p cot o. 4. 90°.

5. ^ = ; = 2 e.
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Art. 126

2. J^L±^, 2v/^, 4 7rVa^ + ^x, 4 7rax. 6. a,

Art. 130

a- cos2

Art, 131

6. 2/ = a ; x = ; and the oblique asymptote x + y = a.

Art. 135

2. y = 0, y + x = -l, y -x=-l. '^'
' i

'

3. x — y = —l, x + y = I, X -\-2y = 0. ^. y = x.

Art. 136

8. xy -\- a^ = 0, x'^y — a^ = 0. 9, 10, if are given in text.

Art. 137

1. x = — a, y = —b, y =:x+ b — a. 9. x-\-y = ^a.

2. x=—2a, x = a. 10. y = 0.

Z. x = ±l, y =±l. 11. x = 0, y = 0, x + y =0.

^. x = y ±1, x + y =±l. 12. x=±a.
5. x = ± a, X = y ± ay/2. 13. x^ = ; two parabolic branclies.

6. yz=x. 1. x = 2a. 14. ?/ = 0.

8. X = 2 a, X + a = ± y. 15. j/ = 0, x = y, x = ?/ ± 1.

Art. 139

1. Parallel to initial line ; a units above it.

2. One, perpendicular to initial line, at distance a left of pole.

3. Their equations are p sin | (2 ^• + 1) ^^ - ^ | = - esc
| (2 7t + 1) - 1 •

4. — = ± cos — sin d, 5. p sin ^ = 2 a.

2p

Art. 143

3. x=(|)6.a. 5. (4, fV3).
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1. Second.

2. First.

3. Second.

4. Second.

6. a=-l.
7. Third.

Art. 156

10 2(x+a^ +jrf.

12. ^.

13.

14
(a; + y)^

15. 3 y/axy.

16. secx.

Art. 157.

(m + l)p'»-i
4-

Ŝp
a(5 — 4cosg)^

^

9 - 6 cos

3. 6. pVl + a2.

Art. 159

1. a = 2a + 305, /3

3. a = x + 3(a:y2)i /3 = y + 3(x2y)i

6

7. -

2x^

4. a = x - ^ Vy2 - c2, i3
= 2 2^.

c

5. (a + /3)^-(a-/3)^=(4a)i

Art. 164
1. (0,0), x±y = 0. 3. (0, 0), a; = 0, y = 0.

2. (± a, 0), 2(x ± a) = db V3y, (0, - a). 4. (0, 0), a; ± y = 0.

9. When it is made numerically smaller.

Art. 178

4. (x-yy-{-4Jcy = 0.

5. («-a)2+(y-^)2 = r2.

3. x^ 4- 2/^ = c». 6. The point (a, j8).

9. (4 az/' !- bxy + cx2) = 4 ac - 62.

1. y2 = ^x».

2. x^ + y« = «f
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Absolute value, 84.

Absolutely couvergent, 84.

Acceleration, 157.

Actual velocity, 151.

Algebraic expression, 3.

operation, 1.

Argument, 4.

Asymptote, 221.

Asymptotic circle, 240.

Average curvature, 84.

velocity, 151.

Beman, 113.

Bending, 243.

Catenary, 211.

Cauchy, 94.

Center of curvature, 255.

Change of variable, 198.

Circle, asymptotic, 240.

of curvature, 255.

Cissoid, 211.

Commutative, 2.

Comparison of infinitesimals, 21.

Computation of ir, 111.

Concave, downwards, 241.

upwards, 241.

Conditionally convergent, 85.

Conjugate point, 281.

Constant, 7.

Contact, 252.

Continuity of an algebraic function, 30.

of a^, 31.

of log a;, 31.

of sin X, cos X, 32.

Continuous function, 7.

variable, 7.

Criteria for continuous function, 29.

Critical value, 134.

Curvature, 27.

Cusp, 279.

Decreasing function, 43.

Definition of continuity, 8, 158.

of curvature, 261.

of ?ith derivative, 73.

De Moivre, 101.

Dependent variable, 7.

Derivative, 37.

of arc, 216.

of area, 40.

of surface, 218.

of volume, 218.

partial, 160.

total, 160.

Determinate value, 117.

Differentiable, 43.

Differential, 156.

Differentiation, 41.

of inverse function, 48.

Discontinuity, 8.

Distributive, 3.

Elementary forms of curves, 28

Entire, 4.

Envelopes, 308.

Equiangular spiral, 125.

Euler, 172.

theorem, 171.

Even contact, 171.

Evolute, 267.

Explicit function, 4.

Exponential curve, 211.

function, 58.

Expression, 3.

Family of curves, 307.

Form of remainder, 95.

Function, 4.

Functional differentiation, 47.

Fundamental problem, 37.

theorem. 20.

335
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General exp. func, 82.

Generating function, 82.

Geometric applications, 212.

illus. of a der., 39.

Hyperbolic branches, 221.

functions, 318.

Implicit function, 4.

Incommensurable power, 58.

Increasing function, 43.

Increment, 8.

Independent variable, 7.

Indeterminate form, 115.

Infinite, 10. ,

Infinitesimal, 10.

Inflexion, 243. :

Integral expression, 3.

Interval of convergence, 82, 90.

of equivalence, 82.

Inverse function, 5, 58.

operation, 1.

Involute, 267, 272.

Irrational, 4.

Klein, 113.

Leibnitz, 75.

theorem, 75.

Limit, 9.

Logarithmic function, 58.

Maclaurin, 87.

theorem, 87.

Maximum, 132, 185.

Mean value, 107.

Measure of curvature, 261.

Minimum, 132, 185.

Modulus, 60.

Montferier, 113.

Multiple point, 277.

Naperian base, 60.

Natural base, 60.

Newton, 75.

Node, 277.

Non-unique derivative, 43.

Normal. 208.

length, 209.

Number, 1.

Oblique asymptotes, 227.

Odd contact, 254.

Operation, 1.

Order of contact, 252.

infinite, 19.

infinitesimal, 19.

Osculating circle, 255.

Osgood, 82, 85.

Parabolic branches, 221, 300.

Parallel curves, 272.

Parameter, 308.

Partial derivative, 160.

Perry, 150, 164, 190.

Polar coordinates, 212.

normal length, 213.

subnormal, 213.

subtangent, 213.

tangent length, 213.

Polynomials, 141.

Principal infinitesimal, 19.

Probability curve, 238, .306.

Process of differentiation, 42.

Radius of curvature, 255.

Rate, 152.

Rational expression, 4.'

Rectilinear asymptote, 221.

Relative error, 101.

Remainder, 86.

Rolle, 85.

Semicubical parabola, 290.

Series, 81.

Shanks, 113.

Simple exponential functions, 68.

Simultaneous increments, 33.

Singular points, 275.

values, 117, 275.

Slope of a line, 40.

Smith, 113.

Stationary tangent, 244.

Stirling, 85.

Subnormal, 209.

Subtangent, 209.

Successive differentiation, 73.

operations, 2.

Sum of a series, 83.

Surd expression, 4.

Symbol of approach, 11.

of an increment, 8.

for inverse functions, 5.

of a function, 5.

Symmetric expression, 4.

Table of derivatives, 71.

Tangent, 208.
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Tangent length, 209.

Taylor, 87.

Test for convergence, 84.

Test for increasing function, 45.

Theorems on infinitesimals, 12, 16.

Total curvature, 2()1.

Total differential, 164.

Tractrix, 211.

Transcendental, expression, 3.

operation, 1.

Transformed expression, 4.

Trigonometric functions, 58.

Turning value, 132.

Unconditionally convergent,

Uniform velocity, 151.

Unique derivative, 43.

Variable, 7.

Vectorial angle, 213.
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